Vol. 36, issue 02, article # 10

Еrmakov A. N., Aloyan A. E., Arutyunyan V. O. Dynamics of sulfate origination in atmospheric haze
. // Optika Atmosfery i Okeana. 2023. V. 36. No. 02. P. 148–153. DOI: 10.15372/AOO20230210 [in Russian].

Copy the reference to clipboard

We consider data from laboratory simulation of the dynamics of sulfate origination in atmospheric haze particles during oxidation of SO2 captured from the gas phase in the presence of Mn/Fe ions. The rates of sulfate origination under dark conditions of these experiments (tens of micrograms m-3 × h-1) have been found to correspond to a previously unknown mode of catalytic reaction. Its key element is the branching of chains involving the intermediate HSO5 (Caro’s acid) and Mn2+ ions. Estimates are given for the rate constant of this aqueous-phase reaction, and a criterion for separation the slow and degenerate-branched (fast) modes of SO2 oxidation is considered. The observed rate constant of sulfate origination in particles k*obs = 1.4 L × mol-1 × s-1 (T = 298 K). The calculations of the dynamics of sulfate origination agree with data of laboratory experiments (smog chamber data). Their results also do not contradict the monitoring data on sulfate content in the haze over Beijing (December 2016).


aerosol haze, sulfur dioxide, catalysis, chain branching, Fe/Mn ions


  1. Wang G.H., Zhang R.Y., Gomes M.E., Song Y., Zhou L., Cao J., Hu J., Tang G., Chen Zh., Li Z., Hu Z., Peng C., Lian C., Chen Y., Pan Y., Zhang Y., Sun Y., Li W., Zhu T., Tian H., Ge M. Persistent sulfate formation from London fog to Chinese haze // PNAS, Proc. Natl. Acad. Sci. USA. 2016. V. 113, N 48. P. 13630–13635.
  2. Liu T., Clegg S.L., Abbatt J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles // PNAS, Proc. Natl. Acad. Sci. USA. 2020. V. 117, N 3. P. 1354–1359.
  3. Liu P., Ye C., Xue Ch., Zhang Ch., Mu Yu., Sun X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry // Atmos. Chem. Phys. 2020. V. 20, N 7. P. 4153–4165.
  4. Fuzzi S., Baltensperger U., Carslaw K., Decesary S. Particulate matter, air quality and climate: Lessons learned and future needs // Atmos. Chem. Phys. 2015. V. 15, N 14. P. 8217–8299.
  5. Nel A. Atmosphere. Air pollution-related illness: Effects of particles // Science. 2005. V. 308, N 5723. P. 804–806.
  6. Cheng Y.F., Zheng G., Way Ch., Mu Q. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China // Sci. Adv. 2016. V. 2, N 12. P. e1601530.
  7. Zheng G.J., Duan F.K., Su H., Ma J.L., Zheng Y., Zheng B., Czhang Q., Huang T., Kimoto T., Chang D., Pőschl U., Cheng Y.F., He K.B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions // Atmos. Chem. Phys. 2015. V. 15, N 6. P. 2969–2983.
  8. Alexander B., Park R.J., Jacob D.J., Gong S. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget // J. Geophys. Res.: Atmos. 2009. V. 114. P. D02309.
  9. Ibusuki T., Takeuchi K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) at environmental reaction conditions // Atmos. Environ. 1987. V. 21, N 7. P. 1555–1560.
  10. Martin L.R., Good T.W. Catalyzed oxidation of sulfur dioxide in solution: The iron–manganese synergism // Atmos. Environ. 1991. V. 25A, N 10. P. 2395–2399.
  11. Brandt C., Fabian I., van Eldik R. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism // J. Inorg. Chem. 1994. V. 33, N 4. P. 687–701.
  12. Zhang H., Xu Y., Jia L. A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water // Atmos. Environ. 2021. V. 245. P. 118019.
  13. Warneck P., Mirabel P., Salmon G.A., van Eldik R., Winckier C., Wannowious K.J., Zetzsch C. Review of the activities and achievements of the EUROTRAC subproject HALIPP // Heterogeneous and Liquid Phase Processes. Berlin Heidelberg: Springer, 1996. P. 7–74.
  14. Berglund J., Fronaeus S., Elding L.I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution // Inorg. Chem. 1993. V. 32, N 21. P. 4527–4537.
  15. Ermakov A.N., Purmal A.P. Catalysis of HSO3/SO32– oxidation by manganese ions // Kinetic. Catal. 2002. V. 43, N 2. P. 249–260.
  16. Angle K.J., Neal E.E., Grassian V.H. Enhancedrates of transition-metal-ion-catalyzed oxidation of S(IV) in aqueous aerosols: Insights into sulfate aerosol formation in the atmosphere // Environ. Sci. Tech. 2021. V. 55, N 15. P. 10291–10299.
  17. Coughanowr D.R., Krause F.E. The reaction of SO2 and O2 in aqueous solutions of MnSO4 // Ind. Eng. Chem. Fund. 1965. V. 4, N 1. P. 61–66.
  18. Barrie L.A., Georgii H.W. An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions // Atmos. Environ. 1976. V. 10, N 9. P. 743–749.
  19. Kaplan D.J., Himmelblau D.M., Kanaoka C. Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst // Atmos. Environ. 1981. V. 15, N 5. P. 763–773.
  20. Herrmann H., Ervens B., Jacobi H.-W., Wolke R., Nowacki P., Zellner R.J. CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry // J. Atmos. Chem. 2000. V. 36, N 3. P. 231–284.
  21. Stanbury D.M. Reduction potentials involving inorganic free radicals in aqueous solutions // Adv. Inorg. Chem. 1989. V. 33. P. 69–138.
  22. Buxton G.V., Mulazzani Q., Ross A. Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solution // J. Phys. Chem. Ref. Data. 1995. V. 24, N 3. P. 1055–1326.
  23. Liu M., Song Y., Zhou T. Fine particle pH during severe haze episodes in northern China // Geophys. Res. Lett. 2017. V. 44, N 10. P. 5213–5221.
  24. Yermakov A.N., Poskrebyshev G.A., Purmal A.P. On the kinetics of bisulfate autooxidation catalyzed by manganese (II) ions // Prog. React. Kinet. 1997. V. 22, N 2. P. 141–171.
  25. Grell G.A. Peckham S., Schmitz R., McKeen S.A. Fully coupled “online” chemistry within the WRF model // Atmos. Environ. 2005. V. 39, N 37. P. 6957–6975.
  26. Cains P.W., Carabine M. Oxidation of sulphur dioxide in aerosol droplets, catalysed by manganous sulphate // J. Chem. Soc. Faraday Trans. 1978. V. 74. P. 2689–2702.
  27. Berresheim H., Jaeschke W. Study of metal aerosol systems as a sink for atmospheric SO2 // J. Atmos. Chem. 1986. V. 4, N 3. P. 311–344.
  28. Crump J.G., Flagan R.C., Seinfeld J.H. An experimental study of the oxidation of sulfur dioxide in aqueous manganese sulfate aerosols // Atmos. Environ. 1967. V. 17, N 7. P. 1277–1289.
  29. URL: http://www.aim.env.uea.ac.uk/aim/aim.php (last access: 29.09.22).
  30. Robinson R., Stoks R. Rastvory elektrolitov. M.: Izd-vo inostrannoi literatury, 1963. 646 p.