Vol. 36, issue 02, article # 2

Rodimova O. B. Absorption by water dimers in the water vapor IR spectra at different temperatures
. // Optika Atmosfery i Okeana. 2023. V. 36. No. 02. P. 86–92. DOI: 10.15372/AOO20230202 [in Russian].

Copy the reference to clipboard

Contributions of stable dimers to the water continuum in the 1600 and 8800 cm-1 bands are examined. They are found as the difference between experimental data and the calculation data within the asymptotic line wing theory taking into account the violation of the longwave approximation for the molecular centers of mass. The stable dimer contribution is close in value to the contribution due to all other pair interactions and decreases with increasing temperature. The estimate of the equilibrium constant of the dimer formation reaction is derived proceeding from the temperature dependence of the classical interaction potential of water molecules describing the temperature behavior of the second virial coefficient.


IR water vapor spectrum, continuum absorption, water vapor dimer, longwave approximation


  1. Ptashnik I.V. Dimery vody: «neizvestnyi» eksperiment // Optika atmosf. i okeana. 2005. V. 18, N 4. P. 359–362.
  2. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  3. Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.
  4. Salmi T., Hаnninen V., Garden A.L., Kjaergaard H.G., Tennyson J., Halonen L. Calculation of the O–H stretching vibrational overtone spectrum of the water dimer // J. Phys. Chem. A. 2008. V. 112. P. 6305–6312.
  5. Lokshtanov S.E., Ivanov S.V., Vigasin A.A. Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs // J. Mol. Struct. 2005. V. 742. P. 31–36.
  6. Ptashnik I.V. Kontinual'noe pogloshchenie vodyanogo para: kratkaya predystoriya i sovremennoe sostoyanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
  7. Simonova A.A., Ptashnik I.V. Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 mm bands // Proc. SPIE. 2016. V. 10035. P. 100350K-1–5.
  8. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12.
  9. Odintsova T.A., Tretyakov M.Yu., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 116–123.
  10. Simonova A.A., Ptashnik I.V., Elsey J., McPheat R.A., Shine K.P., Smith K.M. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277, N 107957. Р. 1–17.
  11. Odintsova T.A., Koroleva A.O., Simonova A.A., Campargue A., Tretyakov M.Yu. The atmospheric continuum in the “terahertz gap” region (15–700 cm-1): Review of experiments at SOLEIL synchrotron and modeling // J. Mol. Spectrosc. 2022. V. 386. P. 111603-1–111603-10.
  12. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noi linii i mezhmolekulyarnoe vzaimodeistvie. Novosibirsk: Nauka, 1986. 216 p.
  13. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyi kontur spektral'nykh linii. Tomsk: Izd-vo IOA SO RAN, 2013. 196 p.
  14. Bogdanova Yu.V., Rodimova O.B. Sootnoshenie mezhdu pogloshcheniem monomerami i dimerami vodyanogo para v predelakh vrashchatel'noi polosy Н2О // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 341–348; Bogdanova Yu.V., Rodimova O.B. Ratio between monomer and dimer absorption in water vapor within the H2O rotational band // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 457–465.
  15. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Dimernoe pogloshchenie v IK-polosakh vodyanogo para // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 801–807; Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Dimer absorption within water vapor bands in the IR region // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 134–140.
  16. Tvorogov S.D. Problema tsentrov mass v zadache o konture spektral'nykh linii. I. Sushchestvovanie dlinnykh traektorii // Optika atmosf. i okeana. 2009. V. 22, N 5. P. 413–419; Tvorogov S.D. Problem of centers of mass within the problem of the contour of spectral lines. I. Existence of long trajectories // Atmos. Ocean. Opt. 2009. V. 22, N 3. P. 257–263.
  17. Bogdanova J.V., Rodimova O.B. Role of diffusion in the violation of the long-wave approximation in line wings // Int. J. Quant. Chem. 2012. V. 112, N 17. P. 2924–2931.
  18. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Pogloshchenie v kryl'yakh polos vodyanogo para i narushenie dlinnovolnovogo priblizheniya dlya tsentrov mass molekul // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 805–815; Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Water vapor line wing absorption and violation of the long-wave approximation for molecular centers of mass // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 111–122.
  19. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoi teorii. Novosibirsk: Nauka, 1984. 167 p.
  20. Tvorogov S.D., Rodimova O.B. Asimptoticheskii i kvazistaticheskii podkhody v teorii kontura spektral'noi linii // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 31–45.
  21. Rodimova O.B. Koeffitsient pogloshcheniya i mezhmolekulyarnye kolebaniya v sisteme CO–Ar // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 164–168; Rodimova O.B. Absorption coefficient and intermolecular vibrations in the СО–Ar system // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 288–292.
  22. Burch D., Alt R. Continuum absorption by H2O in the 700–1200 and 2400–2800 cm-1 windows. Report N AFGL-TR-84-0128. Hanscom AFB, MA. 1984. 31 p.
  23. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini D., Campargue A. The water vapor selfcontinuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 μm // Atmos. Meas. Tech. 2018. V. 11. P. 2159–2171.
  24. Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near-infrared water vapor self-continuum: A test of the MT_CKD model // J. Geophys. Res.: Atmos. 2016. V. 121. P. 13180–13203.
  25. Richard L., Vasilchenko S., Mondelain D., Ventrillard I., Romanini D., Campargue A. Water vapor selfcontinuum absorption measurements in the 4.0 and 2.1 μm transparency windows // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 171–179.
  26. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
  27. Salmi T., Hänninen V., Garden A.L., Kjaergaard H.G., Tennyson J., Halonen L. Calculation of the O–H stretching vibrational overtone spectrum of the water dimer // J. Phys. Chem. A. 2008. V. 112. P. 6305–6312. DOI: 10.1021/jp800754y.
  28. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. P. D163057.
  29. Klimeshina T.E., Rodimova O.B. Raschet kontinual'nogo pogloshcheniya Н2О v IK-diapazone na osnove izmerenii Bercha // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 628–632.
  30. Leforestier C. Water dimer equilibrium constant calculation: A quantum formulation including metastable states // J. Chem. Phys. 2014. V. 140. P. 074106-1–8.
  31. Tretyakov M.Y., Serov E.A., Odintsova T.A. Eqilibrium thermodynamic state of water vapor and the collisional interaction of molecules // Radiophys. Quant. Electron. 2012. V. 54. P. 700–716.
  32. Curtiss L.A., Frurip D.J., Blander M. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity // J. Chem. Phys. 1979. V. 71, N 6. P. 2703–2711.
  33. Pfeilsticker K., Lotter A., Peters C., Bosch H. Atmospheric detection of water dimers via near-infrared absorption // Science. 2003. V. 300. P. 2078–2080.
  34. Nicolaisen F.M. IR absorption spectrum (4200–3100 cm-1) of H2O and (H2O)2 in CCl4. Estimates of the equilibrium constant and evidence that the atmospheric water absorption continuum is due to the water dimer // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 2060–2076.
  35. Tret'yakov M.Yu., Koshelev M.A., Serov E.A., Parshin V.V., Odintsova T.A., Bubnov G.M. Dimer vody i atmosfernyi kontinuum // Uspekhi fiz. nauk. 2014. V. 184, N 11. P. 1999–1215.