Vol. 36, issue 02, article # 6

Konoshonkin A. V., Kustova N. V., Shishko V. A., Timofeev D. N., Kan N., Tkachev I. V., Borovoy A. G., Kokhanenko G. P., Balin Yu. S. Calculation of scanning lidar returns while sounding cirrus clouds with quasi-horizontally oriented crystals
. // Optika Atmosfery i Okeana. 2023. V. 36. No. 02. P. 116–121. DOI: 10.15372/AOO20230206 [in Russian].

Copy the reference to clipboard

The results of numerical simulation of a scanning lidar return for the case of sounding a cloud containing quasi-horizontally oriented plate-like crystals are presented. It is shown that a vertically oriented lidar is "blinded" by the specular component of the scattered radiation, while the scanning lidar return is sensitive to the crystal shape. The results of the numerical calculation confirm a sharp increase in the depolarization ratio in the vicinity of scanning angles of 30°, which was earlier observed in experiments. It is found out that this depolarization ratio enhancement is a marker of the perfect shape of a plate-like crystal and can be used to interpret experimental data.


light scattering, scanning lidar, physical optics method, atmospheric ice crystal, cirrus clouds


  1. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor K.B., Miller H.L. (eds.). New York: Cambridge University Press, 2007. 996 p.
  2. Baker B.M. Cloud microphysics and climate // Science. 1997. V. 276. P. 1072–1078.
  3. Liou K.N., Yang P. Light Scattering by ice Crystals: Fundamentals and Applications. Cambridge: Cambridge University Press, 2016. 460 р.
  4. Winker D.M., Pelon J., McCormick M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds // Proc. SPIE. 2002. V. 4893. DOI: 10.1117/12.466539.
  5. Kikuchi M., Okamoto H., Sato K. A climatological view of horizontal ice plates in clouds: Findings from nadir and off-nadir CALIPSO observations // J. Geophys. Res.: Atmos. 2021. V. 126. P. e2020JD033562.
  6. Kokhanenko G.P., Balin Yu.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning polarization Lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers // Atmos. Meas. Tech. 2020. V. 13, N 3. P. 1113–1127.
  7. Balin Yu.S., Kaul' B.V., Kokhanenko G.P. Nablyudenie zerkal'no otrazhayushchikh chastits i sloev v kristallicheskikh oblakakh // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 293–299.
  8. Platt C.M.R., Abshire N.L., McNice G.T. Lidar backscatter from horizontal ice crystal plates // J. Appl. Meteorol. 1978. V. 17. P. 1220–1224.
  9. Noel V., Sassen K. Study of ice crystal orientation in ice clouds from scanning polarization lidar observations // J. Appl. Meteorol. 2005. V. 44. P. 653–664.
  10. Del Guasta M., Vallar E., Riviere O., Castagnoli F., Morandi V.M. Use of polarimetric lidar for the study of oriented ice plates in clouds // Appl. Opt. 2006. V. 45. P. 4878–4887.
  11. Westbrook C.D., Illingworth A.J., O’Connor E.J., Hogan R.J. Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds // Q. J. R. Meteorol. Soc. 2010. V. 136, N 646. P. 260–276.
  12. Borovoi A., Konoshonki A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Express. 2012. V. 20. P. 28222–28233.
  13. Hayman M., Spuler S., Morley B. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain // Opt. Express. 2014. V. 22, N 14. P. 16976–16990.
  14. Veselovskii I., Goloub P., Podvin T., Tanre D., Ansmann A., Korenskiy M., Borovoi A., Hu Q., Whiteman D.N. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 74–80.
  15. Borovoi A.G., Konoshonkin A.V., Kustova N.V., Veselovskii I.A. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 212. P. 88–96.
  16. Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Application of polarization lidars to study the orientation of crystalline particles in ice clouds // Proc. SPIE. 2021. V. 12086. P. 120860Q.
  17. He Y., Liu F., Yin Z., Zhang Y., Zhan Y., Yi F. Horizontally oriented ice crystals observed by the synergy of zenith- and slant-pointed polarization lidar over Wuhan (30.5° N, 114.4° E), China // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 268. P. 107626.
  18. Eloranta E. High Spectral Resolution Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere / Weitkamp C. (ed.). New York: Springer, 2005. 456 p.
  19. Marinou E., Voudouri K.A., Tsikoudi I., Drakaki E., Tsekeri A., Rosoldi M., Ene D., Baars H., O’Connor E., Amiridis V., Meleti C. Geometrical and microphysical properties of clouds formed in the presence of dust above the Eastern Mediterranean // Remote Sens. 2021. V. 13, N 24. P. 5001.
  20. Gouveia D., Baars H., Seifert P., Wandinger U., Barbosa H., Barja B., Artaxo P., Lopes F., Landulfo E., Ansmann A. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar // EPJ Web. Conf. 2018. V. 176. P. 05037.
  21. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology // J. Atmos. Sci. 1994. V. 51. P. 817–832.
  22. Konoshonkin A.V., Kustova N.V., Osipov V.A., Borovoi A.G., Masuda K., Ishimoto H., Okamoto H. Metod fizicheskoi optiki dlya resheniya zadachi rasseyaniya sveta na kristallicheskikh ledyanykh chastitsakh: sravnenie difraktsionnykh formul // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 830–843.
  23. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
  24. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 175–183.
  25. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Algoritm trassirovki puchkov dlya zadachi rasseyaniya sveta na atmosfernykh ledyanykh kristallakh. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 324–330; Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 441–447.
  26. Yang P., Liou K.N. Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35, N 33. P. 6568–6584.
  27. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1492–1508.
  28. Purcell E.M., Pennypacker C.R. Scattering and absorption of light by nonspherical dielectric grains // Astrophys. J. 1973. V. 186. P. 705–714.
  29. Yurkin M.A., Maltsev V.P., Hoekstra A.G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 106. P. 546–557.
  30. Taflove A. Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 1998. 735 р.
  31. Liu C., Panetta R.L., Yang P. Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 1728–1740.
  32. Grynko Y., Shkuratov Y., Förstner J. Light scattering by randomly irregular dielectric particles larger than the wavelength // Opt. Lett. 2013. V. 38, N 23. P. 5153–5156.
  33. Noel V., Sassen K. Study of ice crystals orientation in ice clouds based on polarized observations from the FARS scanning lidar // Proc. of 22th Intern. Laser Radar Conf., July 12–16, Matera, Italy. P. 309–312.
  34. Eloranta Ed., Razenkov I., Garcia J. Near zenith variation of the lidar ratio—high spectral resolution lidar observations of oriented ice crystals // Proc. of 29th Intern. Laser Radar Conf., June 24–28, Hefei, China. P. S8-82–84.
  35. Baza dannykh matrits obratnogo rasseyaniya. URL: ftp: //ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/.