Vol. 36, issue 05, article # 12

Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Romanovskii Ya. O. Mobile lidar for sounding tropospheric ozone. // Optika Atmosfery i Okeana. 2023. V. 36. No. 05. P. 410–416. DOI: 10.15372/AOO20230512 [in Russian].
Copy the reference to clipboard
Abstract:

A mobile ozone lidar for sounding at wavelengths of 299 and 341 nm was designed and put into operation. The lidar is capable of covering the altitude range from 0.1 to 12 km with a spatial resolution of lidar signals from 1.5 to 150 m. The specification of the mobile lidar is given; the results of a field experiment on laser sounding of the atmosphere in Tomsk are presented. Echo signals received and the ozone profiles retrieved confirm the information content of lidar measurements in the troposphere. The results of lidar and satellite (MetOp) measurements are compared.

Keywords:

mobile lidar, lidar sensing, ozone

References:

1. Belan B.D. Troposfernyj ozon. 1. Svojstva i rol' v prirodnyh i tekhnogennyh protsessah // Optika atmosf. i okeana. 2008. V. 21, N 4. P. 299–322.
2. Measures R.M. Laser Remote Sensing: Fundamentals and Applications. Malabar: Krieger Publishing Company, 1992. 510 p.
3. Leblanc T., Brewer M.A., Wang P.S., Granados-Muñoz M.J., Strawbridge K.B., Travis M., Firanski B., Sullivan J.T., McGee T.J., Sumnicht G.K., Twigg L.W., Berkoff T.A., Carrion W., Gronoff G., Aknan A., Chen G., Alvarez R.J., Langford A.O., Senff C.J., Kirgis G., Johnson M.S., Kuang Shi, Newchurch M.J. Validation of the TOLNet lidars: The Southern California Ozone Observation Project (SCOOP) // Atmos. Meas. Tech. 2018. V. 11, N 11. P. 6137–6162.
4. Sullivan J.T., McGee T.J., Sumnicht G.K., Twigg L.W., Hoff R.M. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region // Atmos. Meas. Tech. 2014. V. 7, N 10. P. 3529–3548.
5. De Young R., Carrion W., Ganoe R., Pliutau D., Gronoff G., Berkoff T., Kuang Sh. Langley mobile ozone lidar: Ozone and aerosol atmospheric profiling for air quality research // Appl. Opt. 2017. V. 56, N 3. P. 721–730.
6. Alvarez R.J., Senff C.J., Langford A.O., Weickmann A.M., Law D.C., Machol J.L., Merritt D.A., Marchbanks R.D., Sandberg S.P., Brewer W.A., Hardesty R.M., Banta R.M. Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling // J. Atmos. Ocean. Technol. 2011. V. 28, N 10. P. 1258–1272.
7. Wang L., Newchurch M., Alvarez R., Berkoff T., Brown S., Carrion W., De Young R., Johnson B., Ganoe R., Gronoff G., Kirgis G., Kuang S., Langford A., Leblanc T., McDuffie E., McGee T., Pliutau D., Senff C., Sullivan J., Sumnicht G., Twigg L., Weinheimer A. Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns // Atmos. Meas. Tech. 2017. V. 10, N 10. P. 3865–3876.
8. Alvarez R.J., Senff C.J., Weickmann A.M., Sandberg S.P., Langford A.O., Marchbanks R.D., Brewer W.A., Hardesty R.M. Reconfiguration of the NOAA TOPAZ lidar for ground-based measurement of ozone and aerosol backscatter // Proc. 26th Intern. Laser Radar Conf. 2012. P. 249–252.
9. Strawbridge K.B., Travis M.S., Firanski B.J., Brook J.R., Staebler R., Leblanc T. A fully autonomous ozone, aerosol, and nighttime water vapor lidar: A synergistic approach to profiling the atmosphere in the Canadian oil sands region // Atmos. Meas. Tech. 2018. V. 11, N 12. P. 6735–6759.
10. Browell E.V., Ismail S., Grant W.B. Differential absorption lidar (DIAL) measurements from air and space // Appl. Phys. B. 1998. V. 67, N 4. P. 399–410.
11. Pan Liu, Tianshu Zhang, Xinhui Sun, Guangqiang Fan, Yan Xiang, Yibin Fu, Yunsheng Dong. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source // Opt. Express. 2020. V. 28, N 9. P. 13786–13800.
12. Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Gridnev Yu.V., Kharchenko O.V. Measurements of ozone vertical profiles in the upper troposphere–stratosphere over Western Siberia by DIAL, MLS, and IASI // Atmosphere. 2020. V. 11, N 2. P. 196.
13. Nevzorov A.A., Nevzorov A.V., Nadeev A.I., Zaitsev N.G., Romanovskii Ya.O. Algoritm upravleniya schetchikom fotonov ozonovogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 5. P. 414–419; Nevzorov A.A., Nevzorov A.V., Nadeev A.I., Zaitsev N.G., Romanovskii Ya.O. Algorithm for control of an ozone lidar photon counter // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 569–575.
14. Pat. 215328. Russia, MPK G01W 1/02 (2006.01), SPK G01W 1/02 (2022.08) Nevzorov A.A., Nevzorov A.V., Romanovskij O.A.; zayavitel' i patentoobladatel' IOA SO RAN (RU). N 2022127769; Zayavl. 11.11.2022; Opubl. 08.12.2022. Byul. N 34.
15. Krueger A.J., Minzner R.A. Mid-latitude ozone model for the 1976 U.S. standard atmosphere // J. Geophys. Res. 1976. V. 81, N D24. P. 4477.
16. Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskii O.A., Kharchenko O.V. Estimation of the spatial resolution influence on the retrieval error of ozone profiles at the Siberian lidar station // Proc. SPIE. 2021. V. 11916. P. 119163H.