An impact of uncertainties of the atmospheric gases absorption line parameters in the modern spectroscopic databases on the longwave fluxes simulation in the atmosphere is estimated. The mass calculations of downward and upward IR fluxes are carried out for meteorological conditions observed in summer months in the Lower Volga Region and winter months in Novosibirsk and for average zonal meteorological models. The radiative fluxes and cooling rates at different levels of the atmosphere calculated with use of new versions of HITRAN and GEISA spectroscopic databases and its previous versions are compared. It is shown that the difference in absorption line parameters in the spectroscopic databases leads to an error less than 0.7 W/m2 (0.3%) in the simulated integral fluxes in the 0–3000 cm-1 region, at that the relative differences in the spectral fluxes calculated with moderate spectral resolution (20 cm-1) are up to 10%. The atmospheric gases and spectral intervals contributing more to the errors in the IR fluxes simulations due to uncertainties of initial spectroscopic information are revealed.
atmospheric radiative transfer, IR radiative flux, spectroscopic database
1. Network for the Detection of Atmospheric Composition Change (NDACC). URL: http://www.ndsc.ncep.noaa. gov (last access: 17.03.2023).
2. Timofeyev Y., Virolainen Y., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg Russia // J. Mol. Spectrosc. 2016. V. 323. P. 2–14. DOI: 10.1016/j.jms.2015.12.007.
3. Mingwei Zhu, Feng Zhang, Wenwen Li, You Wu, Na Xu. The impact of various HITRAN molecular spectroscopic databases on infrared radiative transfer simulation // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 234. P. 55–63.
4. Kolokutin G.E., Fomin B.A. Novye spektroskopicheskie bazy i distantsionnoe zondirovanie Zemli metodami infrakrasnoj spektrometrii vysokogo razresheniya // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2014. V. 11, N 3. P. 278–287.
5. Firsov K.M., Chesnokova T.Yu., Bobrov E.V., Klitochenko I.I. Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors // Proc. SPIE. 2014. V. 9292. P. 929205-1. DOI: 10.1117/12.2075550.
6. Chesnokova T.Yu., Chentsov A.V., Firsov K.M. Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region // J. Appl. Remote Sens. 2020. V. 14, N 3. P. 034510. DOI: 10.1117/1.JRS.14.034510.
7. Firsov K.M., Chesnokova T.Yu., Razmolov A.A. Vliyanie kontinual'nogo pogloshcheniya parov vody na radiatsionnyj forsing uglekislogo gaza v atmosfere dlya regiona nizhnego Povolzh'ya // Optika atmosf. i okeana. 2022. V. 35, N 12. P. 1029–1035.
8. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectros. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
9. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510. DOI: 10.1016/j.jms.2021.111510.
10. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.-P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simecková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. The HITRAN2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 533–572.
11. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D.C., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrink A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
12. Gordon E., Rothman L.S., Hill C., Kochanov R.V., Tana Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T, Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
13. Jacquinet-Husson N., Armante R., Scott N.A., Chédin A., Crépeau L., Boutammine C., Bouhdaoui A., Crevoisier C., Capelle V., Boonne C., Poulet-Crovisier N., Barbe A., Chris Benner D., Boudon V., Brown L.R., Buldyreva J., Campargue A., Coudert L.H., Devi V.M., Down M.J., Drouin B.J., Fayt A., Fittschen C., Flaud J.-M., Gamache R.R., Harrison J.J., Hill C., Hodnebrog Ø., Hut S.-M., Jacquemart D., Jolly A., Jiménez E., Lavrentieva N.N., Liu A.-W., Lodi L., Lyulin O.M., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A., Nielsen C.J., Orphal J., Perevalov V.I., Perrin A., Polovtseva E., Predoi-Cross A., Rotger M., Ruth A.A., Yu S.S., Sung K., Tashkun S.A., Tennyson J., Tyuterev Vl.G., Vander Auwera J., Voronin B.A., Makie A. The 2015 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2016. V. 327. P. 31–72.
14. Mitsel' A.A., Ptashnik I.V., Firsov K.M., Fomin B.A. Effektivnyj metod polinejnogo scheta propuskaniya pogloshchayushchej atmosfery // Optika atmosf. i okeana. 1995. V. 8, N 10. P. 1547–1551.
15. Firsov K.M., Chesnokova T.Yu., Bobrov E.V. Rol' kontinual'nogo pogloshcheniya parov vody v dlinnovolnovyh radiatsionnyh protsessah prizemnogo sloya atmosfery v regione Nizhnego Povolzh'ya // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 665–672; Firsov K.M., Chesnokova T.Yu., Bobrov E.V. The role of the water vapor continuum absorption in near ground long-wave radiation processes of the lower Volga Region // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 1–8.
16. Lacis A.A., Oinas V. A description of the K-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres // J. Geophys. Res. 1991. V. 96, N D5. P. 9027–9063.
17. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Phill. Trans. R. Soc. A. 2012. V. 370. P. 2520–2556.
18. Firsov K.M., Chesnokova T.Yu. Vliyanie variatsij kontsentratsii СН4 i N2O na potoki dlinnovolnovoj radiatsii v atmosfere Zemli // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 790–795.
19. Goody R., West R., Chen L., Crisp D. The correlated-k method for radiation calculations in nonhomogeneous atmospheres // J. Quant. Spectrosc. Radiat. Transfer. 1989. V. 42, N 6. P. 539–550.
20. Morcrette J.J., Fouquart Y. On systematic errors in parameterized calculation of longwave radiation transfer // J. Q. R. Meteorol. Soc. 1985. V. 111. P. 691–708.
21. Anderson G., Clough S., Kneizys F., Chetwynd J., Shettle E. AFGL Atmospheric Constituent Profiles (0–120 km). Air Force Geophysics Laboratory. AFGL-TR-86-0110. Environmental Research Paper. Hanscom AFB: MA 01736. 1986. N 954. 25 p.
22. ECMWF ERA-5. URL: https://www.ecmwf.int/en/ forecasts/datasets/reanalysis-datasets/era5 (last access: 17.03.2023).