The absorption spectrum of 14N18O molecule in the 5200–5500 сm-1 range was recorded for the first time using a Bruker IFS 125M Fourier spectrometer with a spectral resolution of 0.0056 сm-1. The analysis of the spectrum made it possible to detect the vibrational-rotational lines of 3–0 band of the main transitions in X2Π electronic state of 14N18O molecule. For the main transitions 2Π1/2 – 2Π1/2 and 2Π3/2 – 2Π3/2, 102 line positions of L-doublet in three branches were registered. For 61 resolved doublets, the positions and relative intensities of each component of a doublet were determined. The maximum value of the rotational quantum number J was 29.5. The found experimental line positions in 3–0 band confirmed the calculated data given in HITRAN database. The frequencies of registered transitions, weighted in accordance with experimental uncertainties, have been processed, and the spectroscopic constants for the vibrational state v = 3 been determined. With the found spectroscopic constants, we predicted the rotational energy values up to J = 35.5 for the vibrational state v = 3 and, accordingly, the transition frequencies in 3–3 and 3–0 vibrational bands for 2Π1/2 and 2Π3/2 electronic states. The calculations performed showed agreement with the data given in HITRAN within the error specified in this database.
14N18O isotopologue, experimental spectrum, vibration band 3–0, transition frequency, relative intensity, spectroscopic constant
1. Sulakshina O.N., Borkov Yu.G. Critical evaluation of measured line positions of 14N16O in X2Π state // J. Quant. Spetrosc. Radiat. Transfer. 2018. V. 209. P. 171–179.
2. Sulakshina O.N., Borkov Yu.G. Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of 14N16O // Mol. Phys. 2018. V. 116. P. 3519–3529.
3. Borkov Yu.G., Sulakshina O.N., Serdyukov V.I., Sinitsa L.N. Parametry spektral'nykh liniy kolebatel'noy polosy 3–0 dlya molekuly 15N16O v osnovnom elektronnom sostoyanii // Optika atmosf. i okeana. 2023. V. 36, N 4. P. 251–256.
4. Belan B.D. Troposfernyy ozon. 6. Komponenty ozonovykh tsiklov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 358–380.
5. Belan B.D. Ozon v troposfere. Tomsk: IOA SO RAN, 2010. 488 p.
6. Gerard J.C. Satellite observations of the nitric oxide nightglow // Geophys. Res. Lett. 1975. V. 2. P. 179–182.
7. Bertaux J.-L., Leblanc F., Perrier S., Quemerais E., Korablev O., Dimarellis E., Reberac A., Forget F., Simon P.C., Stern S.A., Sandel B. and the SPICAM team†. Nightglow in the upper atmosphere of Mars and implications for atmospheric transport // Science. 2005. V. 307. P. 566–569.
8. Munoz A.G., Mills F.P., Piccioni G., Drossart P. From the cover: The near-infrared nitric oxide nightglow in the upper atmosphere of Venus // Proc. Natl. Acad. Sci. 2009. V. 106. P. 985–988.
9. Kuznetsova V.L., Solov'eva A.G. Oksid azota. Svoystva, biologicheskaya rol', mekhanizmy deystviya // Sovremennye problemy nauki i obrazovaniya. 2015. N 4. P. 462.
10. Hargreaves R.J., Gordon I.E., Rothman L.S., Tashkun S.A., Perevalov V.I., Lukashevskaya A.A., Yurchenko S.N., Tennyson J., Müller H.S.P. Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 232. P. 35–53.
11. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcislo P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., M.Adkins E.M., Baker A., Barbe A., Cane E., Csaszar A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Reed Z.D., Rey M., Richard C., Tobias R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spetrosc. Radiat. Transfer. 2022. V. 277. P. 107949.
12. Dale R.M., Johns J.W.C., McKeller A.R.W., Riggin M. High-resolution laser magnetic resonance and infrared-radiofrequency double-resonance spectroscopy of NO and its isotopes near 5.4 mm // J. Mol. Spectrosc. 1977. V. 67. P. 440–458.
13. Amiot C., Basis R., Guelachvili G. Infrared study of the X2Π v = 0, 1, 2 levels of 14N16O. Preliminary results on the v = 0, 1 levels of 14N17O, 14N18O, and 15N16O // Can. J. Phys. 1978. V. 56. P. 251–265.
14. Freedman R., Nicholls R.W. Notes. Molecular constants for the v² = 0 (X2Π) and v¢ = 0, 1 (A2Σ+) levels of the NO molecule and its isotopes // J. Mol. Spectrosc. 1980. V. 83. P. 223–227.
15. Saleck A.H., Yamada K.M.T., Winnewisser G. Isotopic nitric oxide spectra and breakdown of the Born-Oppenheimer approximation // Mol. Phys. 1991. V. 72. P. 1135–1148.
16. Klish E., Belov S.P., Schnieder R., Winnewisser G., Herbst E. Transitions between Hund's coupling cases for the X2Π state of NO // Mol. Phys. 1999. V. 97. P. 65–79.
17. Müller H.S.P., Kobayashi K., Takahashi K., Tomaru K., Matsushima F. Terahertz spectroscopy of N18O and isotopic invariant fit of several nitric oxide isotopologs // J. Mol. Spectros. 2015. V. 310. P. 92–98.
18. Wong A., Yurchenko S.N., Bernath P., Holder S., Muller P., McConkey S., Tennyson J. ExoMol line list-XXI. Nitric Oxide (NO) // M. N. R. Astron. Soc. 2017. V. 470. P. 882–897.
19. Lyulin O.M. Opredelenie parametrov spektral'nykh liniy iz neskol'kikh spektrov pogloshcheniya s pomoshch'yu programmy MultiSpectrum Fitting // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 408–416; Lyulin O.M. Determination of spectral line parameters from several absorption spectra with the MultiSpectrum Fitting Computer Code // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 487–495.
20. Brown J.M., Colbourn E.A., Watson J.K.G., Wayne F.D. En effective Hamiltonian for diatomic molecules. Ab initio calculations of parameters of HCl+ // J. Mol. Spectrosc. 1979. V. 74. P. 294–318.