Vol. 36, issue 10, article # 4

Apeksimov D. V., Bаbushkin P. A., Zemlyanov A. A., Kabanov A. M., Kochetov D. I., Oshlakov V. K., Petrov A. V., Khoroshaeva E. E. The effect of turbulence on generation of intense light channels during propagation of femtosecond laser pulses along 100-meter air path. // Optika Atmosfery i Okeana. 2023. V. 36. No. 10. P. 811–817. DOI: 10.15372/AOO20231004 [in Russian].
Copy the reference to clipboard
Abstract:

Remote control of intense laser beams is an important problem of atmospheric optics. It is of special interest for atmospheric sounding, where turbulence can affect beam propagation. We experimentally study the effect of a turbulent layer produced at the beginning of a laser radiation propagation path on the characteristics of the filamentation domain and generation of high-intensity plasmaless channels for laser beams 2.5 and 5 cm diameter, including under the phase control of the transverse beam structure with a deformable mirror. Turbulence leads to the approach of the beginning of multifilamentation domain to the radiation source, which is, however, insignificant (< 10% of the path length). More important that a turbulent layer formed at the beginning of the path results in a multiple increase in the number of intense (mean intensity is ~ 1011  1012 W/cm2) light channels in a laser beam during its nonlinear propagation, which induce two-photon fluorescence of dyes at a distance of longer than 100 m from the radiation source with the signal level sufficient for its recording by the lidar scheme. Hence, this laser beam structure can be used for sounding natural and anthropogenic aerosols.

Keywords:

ultrashort laser pulse, high-intensity light channels, turbulence, multiple filamentation

Figures:
References:

1. Daigle J.-F., Kamali Y., Chateauneuf M., Tremblay G., Theberge F., Dubois J., Roy G., Chin S.L. Remote sensing with intense filaments enhanced by adaptive optics // Appl. Phys. B. 2009. V. 97. P. 701–713.
2. Stelmaszczyk K., Rohwetter P. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air // Appl. Phys. Lett. 2004. V. 85, N 18. P. 3977–3979.
3. Xu H.L., Liu W., Chin S.L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials // Opt. Lett. 2006. V. 31, N 10. P. 1540–1542.
4. Sunchugasheva E.S., Ionin A.A., Mokrousova D.V., Seleznev L.V., Sinitsyn D.V., Geints Yu.E., Zemlyanov A.A. Remote sensing for oil products on water surface via fluorescence induced by UV filaments // Proc. SPIE. 2016. V. 9988. P. 99880V-1–99880V-7.
5. Apeksimov D.V., Zemlyanov A.A., Zemlyanov Al.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. The emission spectra in a femtosecond plasma of aerosols // Proc. SPIE. 2018. V. 10833. P. 108332L1–108332L4.
6. Ivanov N.G., Losev V.F., Prokop’ev V.E., Sitnik K.A. Sverkhizluchenie na ionakh molekulyarnogo azota v filamente // Optika atmosf. i okeana. 2016. V. 29, N 2. P. 128–132; Ivanov N.G., Losev V.F., Prokop’ev V.E., Sitnik K.A. Superradiance by molecular nitrogen ions in filaments // Atmos. Ocean. Opt. 2016. V. 29, N 4. P. 385–389.
7. Mejean G., Kasparian J., Yu J., Frey S., Salmon E., Wolf J.-P. Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system // Appl. Phys. B. 2004. V. 78. P. 535–537.
8. Boutou V., Favre C., Hill S.C., Pan Y.L., Chang R.K., Wolf J.-P. Backward enhanced emission from multiphoton processes in aerosols // Appl. Phys. B. 2002. V. 75. P. 145–152.
9. Hill S.C., Pan Y., Holler S., Chang R.K. Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities // Phys. Rev. Lett. 2000. V. 85, N 1. Р. 54–57.
10. Apeksimov D.V., Geints Y.E., Zemlynov A.A., Kabanov A.M., Oshlakov V.K., Petrov A.V., Matvienko G.G. Controlling TW-laser pulse long-range filamentation in air by a deformable mirror // Appl. Opt. 2018. V. 57. P. 9760–9769.
11. Apeksimov D.V., Geints Yu.E., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Vliyanie fazovykh aberratsiy na polozhenie i protyazhennost' oblasti filamentatsii // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 941–947; Apeksimov D.V., Geints Yu.E., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. The effect of phase aberrations on the position and length of the filamentation domain // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 109–116.
12. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Lokalizovannye svetovye struktury s vysokoy intensivnost'yu pri mnozhestvennoy filamentatsii femtosekundnogo impul'sa titan-sapfirovogo lazera na vozdushnoy trasse // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 910–14; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Localized high-intensity light structures during multiple filamentation of Ti:Sapphire laser femtosecond pulses along an air path // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 107–111.
13. Geints Y.E., Ionin A.A., Mokrousova D.V., Rizaev G.E., Selesnev L.V., Sunchugasheva E.S., Zemlyanov A.A. Energy, spectral and angular properties of post-filamentation channels during propagation in air and condensed media // J. Opt. Soc. Am. B. 2019. V. 36. P. G19–G24.
14. Apeksimov D.V., Bulygin A.D., Geints Yu.E., Kabanov A.M., Khoroshaeva E.E., Petrov A.V., Oshlakov V.K. Statistical parameters of femtosecond laser pulse post-filament propagation on a 65 m air path with localized optical turbulence // J. Opt. Sos. Am. B. 2022. V. 39, N 12. P. 3237–3246.
15. Kandidov V.P., Kosareva O.G., Tamarov M.P., Brodeur A., Chin S.L. Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere // Quant. Electron. 1999. V. 29, N 10. P. 911–915.
16. Kandidov V.P., Kosareva O.G., Tamarov M.P., Broder A., Chin S.L. Zarozhdenie i bluzhdanie filamentov pri rasprostranenii moshchnogo lazernogo izlucheniya v turbulentnoy atmosfere // Kvant. elektron. 1999. V. 29, N 1. P. 73–77.
17. Shlenov S.A., Kandidov V.P. Formirovanie puchka filamentov pri rasprostranenii femtosekundnogo lazernogo impul'sa v turbulentnoy atmosfere. Part 2. Statisticheskie kharakteristiki // Optika atmosf. i okeana. 2004. V. 17, N 8. P. 637–641.
18. Kandidov V.P., Shlenov S.A. Teplovoe samovozdeystvie lazernykh puchkov i filamentatsiya impul'sov v turbulentnoy atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 11–17; Kandidov V.P., Shlenov S.A. Thermal self-action of laser beams and filamentation of pulses in turbulent atmosphere // Atmos. Ocean. Opt. 2012. V. 25, N 3. P. 192–198.
19. Shlenov C.A., Markov A.I. Upravlenie filamentatsiey femtosekundnykh lazernykh impul'sov v turbulentnoy atmosfere // Kvant. elektron. 2009. V. 39, N 7. P. 658–662.
20. Salame R., Lascoux N., Salmon E., Ackermann R., Kasparian J., Wolf J.P. Propagation of laser filaments through an extended turbulent region // Appl. Phys. Lett. 2007. V. 91, N 17. P. 171106-1–171106-3.
21. Paunescu G., Spindler G., Riede W., Schroder H., Giesen A. Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence // Appl. Phys. B. 2009. V. 96, N 1. P. 175–183.