Contribution of anthropogenic and wetland methane emissions in North Eurasia (> 40°N) and Russia into the near-surface CH4 abundance at ZOTTO, Teriberka, and Tixi measurement sites is quantified using GEOS-chem global chemical-transport model. Numerical results agree well with the proposed semi-analytical solution, in which the total response in the CH4 level at a given site is represented as the sum of direct (synoptic) and global terms. The annual average direct contribution of Russian anthropogenic emissions into CH4 mixing ratio measured at ZOTTO (38.6 ppbv) is twice as large as that for Western Europe sources (17.7 ppbv). For the Arctic sites, the anthropogenic input from Russian and European anthropogenic sources is roughly similar (19.5 ppbv and 12.4 ppbv, correspondingly). The input from continental sources into methane abundance and its annual variability at the Arctic sites are generally lower compared to those at the ZOTTO site due to larger transport times from upstream CH4 source regions. Atmospheric responses in methane levels at the Teriberca and Tixi sites to CH4 continental sources are found to be very close, which is explained by spatial homogenization of the anthropogenic and biogenic signals in high latitudes.
methane, troposphere, Central Siberia, Arctic, regional CH4 sources, WetCHARTs, EDGAR, ТХМ GEOS-Chem, atmospheric transport
1. Van Dingenen R., Crippa M., Janssens-Maenhout G., Guizzardi D., Dentener F. Global trends of methane emissions and their impacts on ozone concentrations. Luxembourg: Publications Office of the European Union, 2018. DOI: 10.2760/73788, JRC113210.
2. Eliseev A.V. Global'nyy tsikl metana: obzor // Fund. i prikl. klimatol. 2018. N 1. P. 52–70.
3. Anisimov O. Potential feedback of thawing permafrost to the global climate system through methane emission // Environ. Res. Lett. 2007. N 2. DOI: 10.1088/17489326/2/4/045016.
4. Winderlich J. Setup of a CO2 and CH4 measurement system in Central Siberia and modeling of its results. Max Planck Institut für Biogeochemie. Technical Report 26. 2012. P. 120.
5. Rößger N., Sachs T., Wille C., Boike J., Kutzbach L. Seasonal increase of methane emissions linked to warming in Siberian tundra // Nat. Clim. Change. 2022. V. 12. P. 1031–1036.
6. Peng S., Lin X., Thompson R.L., Xi Y., Liu G., Hauglustaine D., Lan X., Poulter B., Ramonet M., Saunois M., Yin Y., Zhang Z., Zheng B., Ciais P. Wetland emission and atmospheric sink changes explain methane growth in 2020 // Nature. 2022. V. 612. P. 477–482.
7. Anisimov O., Zimov S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling // Ambio. 2021. V. 50. P. 2050–2059.
8. Wittig S., Berchet A., Pison I., Saunois M., Thanwerdas J., Martinez A., Paris J.-D., Machida T., Sasakawa M., Worthy D.E.J., Lan X., Thompson R.L., Sollum E., Arshinov M. Estimating methane emissions in the Arctic nations using surface observations from 2008 to 2019, EGUsphere [preprint]. 2023. DOI: 10.5194/egusphere-2022-1257.
9. Glagolev M., Kleptsova I., Filippov I., Maksyutov S., Machida T. Regional methane emission from West Siberia mire landscapes // Environ. Res. Lett. 2011. V. 6. P. 045214.
10. Zona D., Gioli B., Commane R., Lindaas J., Wofsy S.C., Miller C.E., Dinardo S.J., Dengel S., Sweeney C., Karion A., Chang R.Y.-W., Henderson J.M., Murphy P.C., Goodrich J.P., Moreaux V., Liljedahl A., Watts J.D., Kimball J.S., Lipson D.A., Oechel W.C. Cold season emissions dominate the Arctic tundra methane budget // Proc. Nat. Acad. Sci. 2016. V. 113, N 1. P. 40–45.
11. Glagolev M.V., Kleptsova I.E., Filippov I.V., Kazantsev V.S., Maksyutov Sh.Sh. Emissiya metana iz bolotnykh landshaftov tundry Zapadnoy Sibiri // Vestn. Tom. gos. pedagogich. un-ta. 2010. N 3. P. 78–86.
12. Yin Y., Chevallier F., Ciais P., Bousquet P., Saunois M., Zheng B., Worden J., Bloom A.A., Parker R.J., Jacob D.J., Dlugokencky E.J., Frankenberg C. Accelerating methane growth rate from 2010 to 2017: Leading contributions from the tropics and East Asia // Atmos. Chem. Phys. 2021. V. 21. P. 12631–12647.
13. Climate Change 2013: The Physical Science Basis / T. Stocker, D. Qin, G.K. Plattner et al. (eds.). Cambridge, New York: Cambridge University Press, 2013. 1535 p.
14. Bey I., Jacob D.J., Yantosca R.M., Logan J.A., Field B., Fiore A.M., Li Q., Liu H., Mickley L.J., Schultz M. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation // J. Geophys. Res. 2001. V. 106. P. 23073–23096.
15. Janssens-Maenhout G., Crippa M., Guizzardi D., Muntean M., Schaaf E., Dentener F., Bergamaschi P., Pagliari V., Olivier J.G.J., Peters J.A.H.W., van Aardenne J.A., Monni S., Doering U., Petrescu A.M.R., Solazzo E., Oreggioni G.D. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012 // Earth Syst. Sci. Data. 2019. V. 11. P. 959–1002.
16. van der Werf G.R., Randerson J.T., Giglio L., Collatz G.J., Mu M., Kasibhatla P.S., Morton D.C., DeFries R.S., Jin Y., van Leeuwen T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009) // Atmos. Chem. Phys. 2010. V. 10. P. 11707–11735.
17. Bloom A.A., Bowman K.W., Lee M., Turner A.J., Schroeder R., Worden J.R., Weidner R., McDonald K.C., Jacob D.J. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0) // Geosci. Model Dev. 2017. V. 10. P. 2141–2156.
18. Bicheron P., Defourny P., Brockmann C., Schouten L., Vancutsem C., Huc M., Bontemps S., Leroy M., Achard F., Herold M., Ranera F., Arino O. GlobCover – Products Description and Validation Report. Toulouse (France): MEDIAS-France, 2008. URL: https: // publications.jrc.ec.europa.eu/repository/handle/JRC49240 (last access: 26.04.2023).
19. Maasakkers J.D., Jacob D.J., Sulprizio M.P., Scarpelli T.R., Nesser H., Sheng J.-X., Zhang Y., Hersher M., Bloom A.A., Bowman K.W., Worden J.R., Janssens-Maenhout G., Parker R.J. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 // Atmos. Chem. Phys. 2019. V. 19. P. 7859–7881.
20. Stohl A., Eckhardt S., Forster C., James P., Spichtinger N. On the pathways and timescales of intercontinental air pollution transport // J. Geophys. Res. 2002. V. 107, N D23. P. 4684.
21. Yang H., Waugh D.W., Orbe C., Patra P.K., Jöckel P., Lamarque J.-F., Tilmes S., Kinnison D., Elkins J.W., Dlugokencky E.J. Evaluating simulations of interhemispheric transport: Interhemispheric exchange time versus SF6 age // Geophys. Res. Lett. 2019. V. 46. P. 1113–1120.
22. Holzer M. Analysis of passive tracer transport as modeled by an atmospheric general circulation model // J. Clim. 1999. V. 12. P. 1659–1684.
23. Bowman K.P., Cohen P.J. Interhemispheric exchange by seasonal modulation of the Hadley circulation // J. Atmos. Sci. 1997. V. 54, N 16. P. 2045–2059.
24. Derwent R.G., Parrish D.D., Simmonds P.G., O’Doherty S.J., Spain T.G. Seasonal cycles in baseline mixing ratios of a large number of trace gases at the Mace Head, Ireland atmospheric research station // Atmos. Environ. 2020. V. 233. P. 117531.
25. Starodubtsev V.S. Issledovanie variatsiy kontsentratsii metana i uglekislogo gaza v Arkticheskoy zone // Vestn. SVFU. 2018. V. 65, N 3. P. 80–88.
26. Reshetnikov A.I., Ivakhov V.M. Rezul'taty nepreryvnykh nablyudeniy za kontsentratsiey metana na stantsii Tiksi (sravnenie s dannymi sudovykh nablyudeniy na shel'fe morya Laptevykh) // Tr. Glavnoy geofiz. observatorii im. A.I. Voeykova / pod red. V.M. Kattsova, V.P. Meleshko. SPb.: Gidrometeoizdat, 2012. P. 257–269.
27. Shtabkin Yu.A., Moiseenko K.B., Skorokhod A.I., Vasil'eva A.V., Khaymann M. Istochniki i variatsii troposfernogo SO v tsentral'noy Sibiri: chislennye eksperimenty i nablyudeniya na vysotnoy machte ZOTTO // Izv. RAN. Fiz. atmosf. i okeana. 2016. V. 52, N 1. P. 51.