To solve general and special problems of ground-based monitoring of the atmospheric electric field, it is necessary to identify global factors against the local variability of the monitoring data. The global unitary variation in the ionospheric potential, observed in the daily variation in the electric field, is distorted under the electrode effect near the earth's surface. The structure of the resulting electrode layer strongly depends on the degree of turbulent mixing, the specific conductivity of air, and the altitude of electric field measurement. Based on the equation for the total electric current, which follows from the theory of electrode effect of the surface air layer, we simulated daily variations in the electric field at different altitudes under different meteorological conditions. They revealed the dependence of the position and magnitude of the global extreme points of the electric field on the turbulent mixing coefficient, the electrical conductivity of air, and the electrode layer altitude. Our results can be useful for solving applied problems in geophysics, in particular, atmospheric electric field monitoring.
electric field, atmosphere, surface layer, electrode effect, conductivity, turbulent transport, diurnal variations
1. Morozov V.N. Atmosfernoe elektrichestvo // Atmosfera. Spravochnik (spravochnye dannye, modeli). L.: Gidrometeoizdat, 1991. P. 394–408.
2. Morozov V.N. Model' nestatsionarnogo elektricheskogo polya v nizhnei atmosfere // Geomagnetizm i aeronomiya. 2005. V. 45, N 2. P. 268–278.
3. Morozov V.N., Kupovykh G.V. Matematicheskoe modelirovanie global'noi atmosfernoi elektricheskoi tsepi i elektrichestva prizemnogo sloya. SPb.: Asterion, 2017. 307 p.
4. Mareev E.A. Dostizheniya i perspektivy issledovanii global'noi elektricheskoi tsepi // Uspekhi fiz. nauk. 2010. V. 180, N 5. P. 527–534.
5. Williams E.R., Mareev E.A. Recent progress on the global electrical circuit // Atmos. Res. 2014. V. 135–136. P. 208–227.
6. Liu C., Williams E.R., Zipser E.J., Burns G. Diurnal variation of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit // J. Atmos. Sci. 2010. V. 67, N 2. P. 309–323.
7. Mach D.M., Blakeslee R.J., Bateman M.G. Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics // J. Geophys. Res. 2011. V. 59, N 1. P. 183–204.
8. Harrison R.G. The Carnegie curve // Surv. Geophys. 2013. V. 34, N 2. P. 209–232.
9. Adzhiev A.Kh., Kupovykh G.V. Variatsii atmosfernogo elektricheskogo polya na vysokogornykh punktakh nablyudenii // Dokl. RAN. Geofizika. 2015. V. 462, N 2. P. 213–216.
10. Adzhiev A.Kh., Kupovykh G.V. Izmereniya elektricheskogo polya atmosfery v vysokogornykh usloviyakh Priel'brus'ya // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 6. P. 710–715.
11. Mareeva O.V., Mareev E.A., Kalinin A.V., Zhidkov A.A. O roli konvektivnogo generatora v global'noi elektricheskoi tsepi // Solnechno-zemnaya fizika. 2012. Iss. 21. P. 115–118.
12. Kupovykh G.V., Morozov V.N., Shvarts Ya.M. Teoriya elektrodnogo effekta v atmosfere. Taganrog: Izd-vo TRTU, 1998. 123 p.
13. Kupovykh G.V., Timoshenko D.V., Klovo A.G., Kudrinskaya T.V. Electrodynamic processes models in atmospheric surface layer // CATPID-2019. IOP Conf. Series: Materials Science and Engineering. 2019. V. 698. 8 p.
14. Svidel'skii S.S., Litvinova V.S., Kupovykh G.V., Klovo A.G. Formirovanie struktury atmosfernogo elektrodnogo sloya // Izv. YuFu. Tekhn. nauki. 2020. N 5. P. 130–141.
15. Kupovykh G.V. Global variations of ionospheric potential in surface layer // Proc. 11th International Conference Atmospheric Electricity. 1999. Р. 555–558.
16. Redin A.A., Kupovykh G.V. K voprosu o proiskhozhdenii global'nykh i lokal'nykh variatsii elektricheskogo polya vblizi poverkhnosti zemli // Izv. vuzov. Severo-Kavkazskii region. Estestvennye nauki. 2011. N 1. P. 87–90.
17. Zainetdinov B.G., Klovo A.G., Kudrinskaya T.V., Kupovykh G.V., Timoshenko D.V. Formirovanie sutochnykh variatsii atmosfernogo elektricheskogo polya vblizi poverkhnosti Zemli v razlichnykh meteorologicheskikh usloviyakh // Tr. Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo. Iss. 674. Problemy voenno-prikladnoi geofiziki i kontrolya sostoyaniya prirodnoi sredy. 2020. P. 176–180.
18. Elektrodinamicheskie protsessy v prizemnom sloe atmosfery. Taganrog: Izd-vo TTI YuFu, 2009. 114 p.
19. Klovo A.G., Kupovykh G.V., Svidel'skii S.S., Timoshenko D.V. Modelirovanie global'nykh variatsii elektricheskogo polya v prizemnoi atmosfere // Trudy Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo. Iss. 662. Problemy voenno-prikladnoi geofiziki i kontrolya sostoyaniya prirodnoi sred. 2018. P. 37–41.
20. Kupovykh G., Klovo A., Timoshenko D. The atmospheric electric field variations in the surface layer // Rus. Open Conf. on Radio Wave Propagation (RWP), 1–6 July 2019, Kazan. IEEE, 2019. P. 580–583.
21. Kupovykh G.V., Timoshenko D.V., Kudrinskaya T.V., Klovo A.G. Modeling of the atmospheric electric field local variations in the turbulent surface layer // J. Phys.: IOP Conf. Ser. 2020. V. 1604. P. 012003.
22. Adzhiev A.Kh., Klovo A.G., Kudrinskaya T.V., Kupovykh G.V., Timoshenko D.V. Sutochnye variatsii elektricheskogo polya v prizemnom sloe atmosfery // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 4. P. 452–461.
23. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. SPb.: Lan', 2003. 831 p.