А non-line-of-sight optical communication line with an unmanned aerial vehicle (UAV) through the “water – atmosphere” interface allows removing the limitation of UAV position within the transmitting system divergence angle during communication session. The capabilities of such a communication line were not considered in previous works. The capabilities of a non-line-of-sight optical communication line between an underwater transmission system and an UAV located in the atmosphere are experimentally and theoretically estimated. The field experiments demonstrate the possibility of organizing stable non-line-of-sight optical communication between the underwater transmission system and the UAV at baseline distances of 90 m and UAV flight altitude of 30 m. The simulation of a communication line shows that the useful signal is formed mainly by radiation scattered in the atmosphere in the considered communication scheme at small baseline distances. At large baseline distances, the useful signal is formed by radiation scattered in the water. Therefore, at high water turbidity (visibility depth is 3 m), the useful signal is the highest. The results made it possible to analyze the main patterns in the formation of a useful signal in the communication line under study and are the basis for the creation of such systems.
water – atmosphere interface, scattered laser radiation, non-line-of-sight optical communication, visible wavelength range, unmanned aerial vehicle
1. Ding H., Chen G., Majumdar A.K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE J. Sel. Areas Commun. 2009. V. 27, N 9. P. 1535–1544. DOI: 10.1109/JSAC.2009.091203.
2. Drost R.J., Sadler B.M. Survey of ultraviolet non-line-of-sight communications // Semicond. Sci. Technol. 2014. V. 29, N 8. P. 11. DOI: 10.1088/0268-1242/29/8/084006.
3. Britvin A.V. Otsenka impul'snykh kharakteristik opticheskogo atmosfernogo ul'trafioletovogo kanala s rasseyaniem // Vestn. NGU. Seriya: Fiz. 2010. V. 5, N 2. P. 5–7. DOI: 10.54362/1818-7919-2010-5-2-5-7.
4. Liao L., Li Z., Lang T., Chen G. UV LED array based NLOS UV turbulence channel modeling and experimental verification // Opt. Express. 2015. V. 23. P. 21825–21835. DOI: 10.1364/OE.23.021825.
5. Tarasenkov M.V., Belov V.V., Poznakharev E.S. Estimation of optimal wavelengths for atmospheric non-line-of-sight optical communication in the UV range of the spectrum in daytime and at night for baseline distances from 50 m to 50 km // J. Opt. Soc. Am. A. 2022. V. 39. P. 177–188. DOI: 10.1364/JOSAA.440875.
6. Liu W., Zou D., Xu Z., Yu J. Non-line-of-sight scattering channel modeling for underwater optical wireless communication // IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China. 2015. P. 1265–1268. DOI: 10.1109/CYBER.2015.7288125.
7. Sun X., Ooi B.S., Kang C.H., Kong M., Alkhazragi O., Guo Y., Ouhssain M., Weng Y., Jones B., Ng T.K. A review on practical considerations and solutions in underwater wireless optical communication // J. Lightwave Technol. 2020. V. 38, N 2. P. 421–431. DOI: 10.1109/JLT.2019.2960131.
8. Tarasenkov M.V., Belov V.V., Poznakharev E.S. Statisticheskoe modelirovanie kharakteristik podvodnoj opticheskoj svyazi na rasseyannom izluchenii // Optika atmosf. i okeana. 2019. V. 32, N 4. P. 273–278. DOI: 10.15372/AOO20190403; Tarasenkov M.V., Belov V.V., Poznakharev E.S. Statistical simulation of the characteristics of diffuse underwater optical communication // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 387–392.
9. Ding J., Mei H., Chin-Lin I., Zhang H., Liu W. Frontier progress of unmanned aerial vehicles optical wireless technologies // Sensors. 2020. V. 20. P. 5476. DOI: 10.3390/s20195476.
10. Ramdhan N., Sliti M., Boudriga N. Codeword-based data collection protocol for optical Unmanned Aerial Vehicle networks // HONET-ICT. 2016. P. 35–39. DOI: 10.1109/HONET.2016.7753446.
11. Tadayyoni H., Uysal M. Ultraviolet communications for ground-to-air links // 27th Signal Processing and Communications Applications Conference (SIU). Sivas, Turkey, 2019. P. 1–4. DOI: 10.1109/SIU.2019.8806490.
12. Zhao T., Zhao S., Cao D. Research on optimal persistent formation algorithm of wireless ultraviolet collaboration UAV // Proc. SPIE. 2019. Vol. 11209. P. 1–11. DOI: 10.1117/12.2549941.
13. Dabiri M.T., Sadough S.M.S., Ansari I.S. Tractable optical channel modeling between UAVs // IEEE Transac. Vehicular Technol. 2019. V. 68, N 12. P. 11543–11550. DOI: 10.1109/TVT.2019.2940226.
14. Li X., Feng W., Chen Y., Wang C.-X., Ge N. UAV-enabled accompanying coverage for hybrid satellite–UAV–terrestrial maritime communications // 28th Wireless and Optical Communications Conference (WOCC). Beijing, China, 2019. P. 1–5. DOI: 10.1109/WOCC. 2019.8770592.
15. Zheng X., Guo L., Cheng M., Li J. Average BER of maritime visible light communication system in atmospheric turbulent channel // Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). Xuzhou, China, 2018. P. 1–3. DOI: 10.1109/CSQRWC.2018.8455332.
16. Mohorcic M., Fortuna C., Vilhar A., Horwath J. Evaluation of wavelength requirements for stratospheric optical transport networks // J. Commun. 2009. V. 4. P. 588–596. DOI: 10.4304/jcm.4.8.588-596.
17. Li M., Hong Y., Zeng C., Song Y., Zhang X. Investigation on the UAV-to-satellite optical communication systems // IEEE J. Sel. Areas Commun. 2018. V. 36, N 9. P. 2128–2138. DOI: 10.1109/JSAC.2018.2864419.
18. Tarasenkov M.V., Poznakharev E.S., Fedosov A.V. Non-line-of-sight atmospheric optical communication in the visible wavelength range between UAV and the ground surface // Atmosphere. 2024. V. 15, N 21. DOI: 10.3390/atmos15010021.
19. Luo H., Wang J., Bu F., Ruby R., Wu K., Guo Z. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review // IEEE Sensors J. 2022. V. 22, N 9. P. 8360–8382. DOI: 10.1109/JSEN.2022.3162600.
20. Li J., Yang B., Ye D., Wang L., Fu K., Piao J., Wang Y. A real-time, full-duplex system for underwater wireless optical communication: Hardware structure and optical link model // IEEE Access. 2020. V. 8. P. 109372–109387. DOI: 10.1109/ACCESS.2020.3001213.
21. Belov V.V., Abramochkin V.N., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V., Poznakharev E.S. Izmeritel' koeffitsienta oslableniya vodnoj sredy v laboratornykh i polevykh usloviyakh // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 983–985. DOI: 10.15372/AOO20191205.
22. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 1010. MA: Hansom AFB, 1988. 137 p.
23. Optika okeana i atmosfery / pod red. K.S. Shifrina. M.: Nauka, 1981. 231 p.
24. Optika okeana. V. 1. Fizicheskaya optika okeana / pod red. A.S. Monina. M.: Nauka, 1983. 372 p.
25. Optika okeana. V. 2. Prikladnaya optika okeana / pod red. A.S. Monina. M.: Nauka, 1983. 236 p.
26. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Troitskii V.O., Shiyanov D.V. Atmosfernye bistaticheskie kanaly svyazi s rasseyaniem. Part 1. Metody issledovaniya // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 261–267; Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Troitskii V.O., Shiyanov D.V. Atmospheric bistatic communication channels with scattering. Part 1. Methods of Study // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 364–370.
27. Marchuk G.I., Mikhailov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoi optike / pod red. G.I. Marchuka. Novosibirsk: Nauka, Sib. otd-e, 1976. 282 p.