Content of issue 01, volume 38, 2025

1. The centenary of the birth of Vladimir Evseevich Zuev: contribution to science and heritage for future generations. P. 5–6
2. Tarasenkov M. V., Poznaharev E. S., Fedosov A. V., Kudryavtsev A. N., Belov V. V. Estimation of the capabilities of non-line-of-sight optical communications with UAVs through “water atmosphere” interface. P. 7–14
Bibliographic reference:
Tarasenkov M. V., Poznaharev E. S., Fedosov A. V., Kudryavtsev A. N., Belov V. V. Estimation of the capabilities of non-line-of-sight optical communications with UAVs through “water atmosphere” interface. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 7–14. DOI: 10.15372/AOO20250101 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tarasenkov M.V., Poznakharev E.S., Fedosov A.V., Kudryavtsev A.N., Belov V.V. Capabilities of Non-line-of-sight Optical Communications with UAV through Water–Atmosphere Interface // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 221–227.
Copy the reference to clipboard    Open the english version
3. Musikhin I. D., Kapustin V. V., Movchan A. K., Poznaharev E. S., Kuryachy M. I., Tislenko A. A., Zabuga S. A. Influence of inhomogeneous optical radiation propagation media on the accuracy of space depth mapping by multi-zone active-pulse television measuring systems. P. 15–23
Bibliographic reference:
Musikhin I. D., Kapustin V. V., Movchan A. K., Poznaharev E. S., Kuryachy M. I., Tislenko A. A., Zabuga S. A. Influence of inhomogeneous optical radiation propagation media on the accuracy of space depth mapping by multi-zone active-pulse television measuring systems. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 15–23. DOI: 10.15372/AOO20250102 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Musikhin I.D., Kapustin V.V., Movchan A., Poznakharev E.S., Kuryachy M.I., Tislenko A.A., Zabuga S.A. Influence of Inhomogeneous Optical Radiation Propagation Media on the Accuracy of Space Depth Mapping by Multizone Active-Pulse Television Measuring Systems // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 239–248.
Copy the reference to clipboard    Open the english version
4. Yushkov V. P. The relation of density and temperature fluctuations to the kinetic energy of turbulence in the atmospheric boundary layer. P. 23–31
Bibliographic reference:
Yushkov V. P. The relation of density and temperature fluctuations to the kinetic energy of turbulence in the atmospheric boundary layer. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 23–31. DOI: 10.15372/AOO20250103 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Yushkov V.P. The Relation of Density and Temperature Fluctuations to the Kinetic Energy of Turbulence in the Atmospheric Boundary Layer // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 249–258.
Copy the reference to clipboard    Open the english version
5. Gorchakov G. I., Karpov A. V., Gushchin R. A., Dazenko O. I., Semutnikova E. G. Black carbon, brown carbon, and selective smoke aerosol absorption during large-scale wildfires in Alaska in 2019 and Canada in 2023. P. 32–38
Bibliographic reference:
Gorchakov G. I., Karpov A. V., Gushchin R. A., Dazenko O. I., Semutnikova E. G. Black carbon, brown carbon, and selective smoke aerosol absorption during large-scale wildfires in Alaska in 2019 and Canada in 2023. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 32–38. DOI: 10.15372/AOO20250104 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Gorchakov G.I., Karpov A.V., Gushchin R.A., Datsenko O.I., Semoutnikova E.G. Black Carbon and Brown Carbon and Selective Smoke Aerosol Absorption during Massive Wildfires in Alaska in 2019 and Canada in 2023 // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 266–272.
Copy the reference to clipboard    Open the english version
6. Belan B. D., Dudorova N. V., Kotelnikov S. N. Ground-level ozone as a factor of increase in community-acquired pneumonia rate in Moscow in warm seasons. P. 39–46
Bibliographic reference:
Belan B. D., Dudorova N. V., Kotelnikov S. N. Ground-level ozone as a factor of increase in community-acquired pneumonia rate in Moscow in warm seasons. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 39–46. DOI: 10.15372/AOO20250105 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Belan B.D., Dudorova N.V., Kotel’nikov S.N. Ground-Level Ozone as a Factor of Increase in Community-Acquired Pneumonia Rate in Moscow in Warm Seasons // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 300–307.
Copy the reference to clipboard    Open the english version
7. Kablukova E. G., Oshlakov V. G., Prigarin S. M. Simulation of polarized signal of laser navigation system by Monte Carlo method. P. 47–55
Bibliographic reference:
Kablukova E. G., Oshlakov V. G., Prigarin S. M. Simulation of polarized signal of laser navigation system by Monte Carlo method. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 47–55. DOI: 10.15372/AOO20250106 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Kablukova E.G., Oshlakov V.G., Prigarin S.M. Monte Carlo Simulation of Polarized Signals of a Laser Navigation System // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 317–326.
Copy the reference to clipboard    Open the english version
8. Korshunov V. A. Two-component optical model of stratospheric aerosol and its application to interpretation of lidar measurements. P. 56–63
Bibliographic reference:
Korshunov V. A. Two-component optical model of stratospheric aerosol and its application to interpretation of lidar measurements. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 56–63. DOI: 10.15372/AOO20250107 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Korshunov V.A. Two-Component Optical Model of Stratospheric Aerosol and Its Application to Interpretation of Lidar Measurements // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 327–335.
Copy the reference to clipboard    Open the english version
9. Marakasov D. A., Sukharev A. A., Tsvyk R. Sh. Laser transillumination study of supersonic jets. P. 64–71
Bibliographic reference:
Marakasov D. A., Sukharev A. A., Tsvyk R. Sh. Laser transillumination study of supersonic jets. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 64–71. DOI: 10.15372/AOO20250108 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Marakasov D.A., Sukharev A.A., Tsvyk R.Sh. Laser Transillumination Study of Supersonic Jets // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 336–344.
Copy the reference to clipboard    Open the english version
10. Romanovskii O. A., Yakovlev S. V., Sadovnikov S. A., Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Kistenev Yu. V. Ground-based stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere. P. 72–84
Bibliographic reference:
Romanovskii O. A., Yakovlev S. V., Sadovnikov S. A., Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Kistenev Yu. V. Ground-based stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 72–84. DOI: 10.15372/AOO20250109 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Romanovskii O.A., Yakovlev S.V., Sadovnikov S.A., Nevzorov A.A., Nevzorov A.V., Kharchenko O.V., Kravtsova N.S., Kistenev Yu.V. Ground-based Stationary Differential Absorption Lidars for Monitoring Greenhouse Gases in the Atmosphere // Atmospheric and Oceanic Optics, 2025, V. 38. No. 03. pp. 345–359.
Copy the reference to clipboard    Open the english version