The smoky haze that occurs during massive forest fires radically transforms the radiation regime of the atmosphere over large areas, which is significantly influenced by the variability of the imaginary part of the refractive index of smoke aerosol. The variability of shortwave radiation fluxes in a smoke-laden atmosphere is driven by variations in the optical and microphysical properties of smoke aerosols, including the spectral dependencies of the imaginary part of the refractive index. These dependencies are determined by the presence of black carbon, brown carbon, and radiation-selective absorbing organic compounds in the aerosol particles. This study analyzes the aforementioned spectral dependencies using AERONET data during large-scale wildfires in Alaska in 2019 and Canada in 2023. The analysis includes cases of extreme radiation absorption by black and brown carbon, where the imaginary part of the refractive index at a wavelength of 440 nm reached 0.50 and 0.27, respectively. Variations in the spectral dependence of the imaginary part of the refractive index during moderate manifestations of selective absorption of smoke aerosol during massive fires in Alaska and Canada are analyzed. Approximations for the spectral dependence of the imaginary part of the refractive index are proposed. Estimates of aerosol radiative forcing at the top of the atmosphere are given for extreme manifestations of radiation absorption in the visible and near-infrared spectral regions by black carbon and brown carbon and during anomalous selective absorption. The results indicate a need in the detailed study of large-scale atmospheric smoke.
largescale smoke haze, smoke aerosol, optical characteristic, black carbon, brown carbon, selective absorption, imaginary part of index of refraction, spectral dependence, AERONET
1. Masson-Delmotte V., Zhai P., Pörtner H.O., Roberts D., Skea J., Shukla P.R., Pirani A., Moufouma-Okia W., Péan C., Pidcock R., Connors S., Matthews J.B.R., Chen Y., Zhou X., Gomis M.I., Lonnoy E., Maycock T., Tignor M., Waterfield T. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge, UK; New York, USA: Cambridge University Press, 2022. 616 p.
2. Ju J., Dunne J.P., Shevliakoka E., Ginox P., Malyshevs S., John J.G., Krasting J.P. Increased risk of the 2019 Alaskan July fires due to anthropogenic activity // Bull. Am. Meteorol. Soc. 2021. V. 102, N 1. P. S1–S7. DOI: 10.1175/BAMS-D-20-0154.1.
3. Mokhov I.I., Gorchakova I.A. Radiatsionnyi i temperaturnyi effekt letnikh pozharov 2002 year v Moskovskom regione // Dokl. RAN. 2005. V. 400, N 4. P. 528–531.
4. Chubarova N., Nezval’ Y., Sviridenkov M., Smirnov A., Slutsker I. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010 // Atmos. Meas. Tech. Discuss. 2011. V. 4. P. 6351–6386. DOI: 10.5194/amt-5-557-2012.
5. Panchenko M.V., Zhuravleva T.B., Kozlov V.S., Nasrtdinov I.M., Pol'kin V.V., Terpugova S.A., Chernov D.G. Otsenka radiatsionnykh effektov aerozolya v dymovykh i zadymlennykh usloviyakh atmosfery Sibiri // Meteorol. i gidrol. 2016. N 2. P. 45–54.
6. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. V. 10. P. 179–198. DOI: 10.5194/amt-10-179-2017.
7. Arshinov M.Yu., Belan B.D. Issledovaniya dispersnogo sostava aerozolya v periody vesennei dymki i lesnykh pozharov // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 468–474.
8. Bondur V.G., Ginzburg A.S. Emissiya uglerodsoderzhashchikh gazov i aerozolei ot prirodnykh pozharov na territorii Rossii po dannym kosmicheskogo monitoringa // Dokl. RAN. 2016. V. 466, N 4. P. 473–477. DOI: 10.7868/S0869565216040186.
9. Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomal'nye pozhary 2010 i 2012 years na territorii Rossii i postuplenie chernogo ugleroda v Arktiku // Optika atmosf. i okeana. 2016. V. 29, N 6. P. 482–487. DOI: 10.15372/AOO20160606; Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 545–550.
10. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical – microphysical properties of smoke haze from Siberian forest fires in summer 2012 // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5722–5741. DOI: 10.1080/01431161.2014.945010.
11. Gorchakov G.I., Sitnov S.A., Sviridenkov M.A., Semoutnikova E.G., Emilenko A.S., Isakov A.A., Kopeikin V.M., Karpov A.V., Gorchkova I.A., Verichev K.S., Kurbatov G.A., Ponomareva T.Ya. Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012 // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5698–5721. DOI: 10.1080/01431161.2014.945008.
12. Gorchakov G.I., Sitnov S.A., Karpov A.V., Gorchakova I.A., Gushchin R.A., Datsenko O.I. Krupnomasshtabnye dymki Evrazii letom 2016 year // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 3. P. 41–51. DOI: 10.31857/S0002-351555341-51.
13. Gorchakov G.I., Gushchin R.A., Kopeikin V.M., Karpov A.V., Semutnikova E.G., Datsenko O.I., Ponomareva T.Ya. Anomal'noe pogloshchenie dymovogo aerozolya v vidimoi i blizhnei infrakrasnoi oblastyakh spektra // Dokl. RAN. Nauki o Zemle. 2023. V. 510, N 1. P. 92–98. DOI: 10.31857/S2686739723600030.
14. Gorchakov G.I., Kopeikin V.M., Gushchin R.A., Karpov A.V., Semutnikova E.G., Datsenko O.I., Ponomareva T.Ya. Anomal'noe selektivnoe pogloshchenie dymovogo aerozolya pri massovykh lesnykh pozharakh na Alyaske v iyule-avguste 2019 year // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 6. P. 740–753. DOI: 10.31857/S0002351523060044.
15. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – a federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16. DOI: 10.1016/S0034-4257(98)00031-5.
16. Sinyuk A., Holben B.N., Eck T.F., Giles D.M., Slutsker I., Korkin S., Schafer J.S., Smirnov A., Sorokin M., Lyapustin A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2 // Atmos. Meas. Tech. 2020. V. 13. P. 3375–3411. DOI: 10.5194/amt-13-3375-2020.
17. Sayer A.M., Hsu N.C., Eck T.F., Smirnov A., Holben B.N. AERONET – based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth // Atmos. Chem. Phys. 2014. V. 14, N 20. P. 11493–11523. DOI: 10.5194/acp-14-11493-2014.
18. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
19. Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: A significant atmospheric absorber of solar radiation? // Atmos. Chem. Phys. 2013 V. 13, N 17. P. 8607–8621. DOI: 10.5194/acp-13-8607-2013.
20. Gorchakov G.I., Vasil'ev A.V., Verichev K.S., Semutnikova E.G., Karpov A.V. Tonkodispersnyi korichnevyi uglerod v zadymlennoi atmosfere // Dokl. RAN. 2016. V. 471, N 1. P. 91–97. DOI: 10.7868/S0869565216310194.
21. Gorchakov G.I., Karpov A.V., Pankratova N.V., Semutnikova E.G., Vasil'ev A.V., Gorchakova I.A. Korichnevyi i chernyi uglerod v zadymlennoi atmosfere pri pozharakh v boreal'nykh lesakh // Issled. Zemli iz kosmosa. 2017. N 3. P. 11–21. DOI: 10.7868/S0205961417030034.
22. Alexander D.T., Crozier P.A., Anderson J.R. Brown carbon spheres in East Asian outflow and their optical properties // Science. 2008. V. 321. P. 833–836. DOI: 10.1126/science.1155296.
23. Eck T.F., Holben B.N., Reid J.S., Sinyuk A., Hyer E.J., O’Neill N.T., Shaw G.E., Vande Castle J.R., Chapin F.S., Dubovik O., Smirnov A. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site // J. Geophys. Res: Atmos. 2009. V. 16, N 114. D11208. DOI: 10.1029/2008JD010870.
24. Torres O., Ahn C., Chen Z. Improvements to the OMI near UV aerosol algorithm using A-train CALIOP and AIRS observations // Atmos. Meas. Tech. Discuss. 2013. V. 6, N 3. P. 5621–5652. DOI: 10.5194/amt-6-3257-2013, 2013.
25. Bond T.C., Doherty S.J., Fahey D.V., Forster P.M. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res. 2013. V. 118. P. 5380–5552. DOI: 10.1002/jgrd.50171.
26. Konovalov I.B., Lvova D.A., Beekmann M., Jethva H., Mikhailov E.F., Paris J.-D., Belan B.D., Kozlov V.S., Ciais P., Andreae M.O. Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths // Atmos. Chem. Phys. 2018. V. 18. P. 14889–14924. DOI: 10.5194/acp-18-14889-2018.
27. Mikhailov E.F., Mironova S.Yu., Makarova M.V., Vlasenko S.S., Ryshkevich T.I., Panov A.V., Andreae M.O. Issledovanie sezonnoi izmenchivosti uglerodsoderzhashchei fraktsii atmosfernogo aerozolya TSentral'noi Sibiri // Iz. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 4. P. 484–484.
28. Gorchakov G.I., Karpov A.V., Vasil'ev A.V., Gorchakova I.A. Korichnevyi i chernyi uglerod v smogakh megapolisov // Optika atmosf. i okeana. 2017. V. 30, N 1. P. 5–11. DOI: 10.15372/AOO20170101; Gorchakov G.I., Karpov A.V., Vasiliev A.V., Gorchakova I.A. Brown and black carbons in megacity smogs // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 248–254.
29. Hand J.L., Malm W.C., Laskin A., Day D., Lee T.B., Wang C., Carrico C., Carrillo J., Cowin J.P., Collett Jr J., Iedema M.J. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study // J. Geophys. Res.: Atmos. 2005. V. 110. D21210. P. 1–14. DOI: 10.1029/2004JD005728.
30. Hoffer A., Tóth A., Nyirő-Kósa I., Pósfai M., Gelencsér A. Light absorption properties of laboratory-generated tar ball particles // Atmos. Chem. Phys. 2016. V. 16. P. 239–246. DOI: 10.5194/acp-16-239-2016.
31. Adachi K., Sedlacek III A.J., Kleinman L., Huble J.M., Shilling J.E., Onash T.B., Kinase T., Sakata K., Takahashi J., Buseck P.R. Spherical tar ball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke // Proc. Nat. Acad. Sci. 2019. V. 116, N 39. P. 19336–19341. DOI: 10.1073/pnas.1900129116.
32. Li C., He Q., Schade J., Passig J., Zimmermann R., Meidan D., Laskin A., Rudich Y. Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging // Atmos. Chem. Phys. 2019. V. 19. P. 139–163. DOI: 10.5194/acp-19-139-2019.
33. Sedlasec III A.J., Buseck P.R., Adachi K., Onasch T.B., Springstons S.K., Kleinman J. Formation and evolution of tar balls from Northwestern US wildfires // Atmos. Chem. Phys. 2018. V. 18, N 15. P. 11289–11301. DOI: 10.5194/acp-18-11289-2018.
34. Konovalov I.B., Beekmann M., Golovushkin N.A., Andrea M.O. Nonlinear behavior of organic aerosol in biomass burning plumes: A microphysical model analysis // Atmos. Chem. Phys. Discuss. 2019. V. 19. P. 12091–12119. DOI: 10.5194/acp-19-12091-2019.
35. Russell P.B., Redemann J., Schmid B., Bergstrom R.W., Livingston J.M., McIntosh D.M., Ramirez S.A., Hartley S., Hobbs P.V., Quinn P.K., Carrico C.M., Rood M.J., Ostrom E., Noon K.J., von Houningen-Huene W., Remer L. Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments // J. Atm. Sci. 2002. V. 59, N 3, Part 2. P. 609–619. DOI: 10.1175/1520-0469(2002)059<0609:COASSA>2.0.CO;2.