Identifying the types of atmospheric aerosols plays a significant role in evaluating the influence of aerosols on the climate system, identifying aerosol sources, and improving aerosol satellite retrieval algorithms. At present, there are various ways to classify aerosol particles, but most of them do not take into account regional characteristics. Based on the archival data of photometric observations of the robotic monitoring network AERONET in Middle Urals, a version of classification of the main types of aerosol particles is suggested. The classification was performed by the spectral values of the aerosol optical thickness by the method of k-medians. The initial centers of clusters were defined by spectral values of extinction coefficient calculated with MOPSMAP package from the regional aerosol model MUrA and the global model CALIPSO. Five types of aerosols were identified: Dust, Clean Continental (background), Polluted Continental/Smoke, Polluted dust, and Elevated Smoke. Analysis of data showed that Clean Continental and Dust aerosols are most common in the Middle Urals (26 and 25% of observations, respectively), while the presence of Polluted Continental/Smoke accounts for 20%. The suggested approach makes it possible to significantly supplement the information obtained by spectral ground-based photometric measurements.
aerosol type, regional aerosol model MUrA, AERONET, Middle Urals
1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). Cambridge, United Kingdom; New York, USA: Cambridge University Press, 2021. DOI: 10.1017/9781009157896.
2. Choudhury G., Tesche M. Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements // Atmos. Meas. Tech. 2022. V. 15. P. 639–654. DOI: 10.5194/amt-15-639-2022.
3. Russell P.B., Kacenelenbogen M., Livingston J.M., Hasekamp O.P., Burton S.P., Schuster G.L., Johnson M.S., Knobelspiesse K.D., Redemann J., Ramachandran S. A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry // J. Geophys. Res.: Atmos. 2014. V. 119, N 16. P. 9838–9863. DOI: 10.1002/2013JD021411.
4. Ma X., Huang Z., Qi S., Huang J., Zhang S., Dong Q., Wang X. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations // Sci. Total Environ. 2020. V. 721. P. 137699. DOI: 10.1016/j.scitotenv.2020.137699.
5. Vinogradova A.A., Ivanova Yu.A. Atmosfernyi perenos chernogo ugleroda v Rossiiskuyu Arktiku ot razlichnykh istochnikov (zima i leto 2000–2016 years) // Optika atmosf. i okeana. 2023. V. 36, N 6. P. 425–432. DOI: 10.15372/AOO20230601; Vinogradova A.A., Ivanova Yu.A. Atmospheric transport of black carbon to the Russian Arctic from different sources: Winter and summer 2000–2016 // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 758–766.
6. Omar A.H., Winker D.M., Vaughan M.A., Hu Y., Trepte C.R., Ferrare R.A., Lee K.P., Hostetler C.A., Kittaka C., Rogers R.R., Kuehn R.E. The CALIPSO automated aerosol classification and lidar ratio selection algorithm // J. Atmos. Ocean. Technol. 2009. V. 26. P. 1994–2014. DOI: 10.1175/2009JTECHA1231.1.
7. Panchenko M.V., Kozlov V.S., Pol'kin V.V., Terpugova S.A., Tumakov A.G., Shmargunov V.P. Vosstanovlenie opticheskikh kharakteristik troposfernogo aerozolya Zapadnoi Sibiri na osnove obobshchennoi empiricheskoi modeli, uchityvayushchei pogloshchayushchie i gigroskopicheskie svoistva chastits // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 46–54.
8. Panchenko M.V., Kozlov V.S., Polkin V.V., Terpugova S.A., Polkin V.V., Uzhegov V.N., Chernov D.G., Shmargunov V.P., Yausheva E.P., Zenkova P.N. Aerosol characteristics in the near-ground layer of the atmosphere of the city of Tomsk in different types of aerosol weather // Atmosphere. 2020. V. 11, N 1. DOI: 10.3390/atmos11010020.
9. Holben B.N., Eck T.I., Slutsker I., Tanre D., Buis J.P., Setzer A., Vemote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – a federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16. DOI: 10.1016/S0034-4257(98)00031-5.
10. Estevan R., Martínez-Castro D., Suarez-Salas L., Moya A., Silva Y. First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru // Atmos. Environ. X. 2019. V. 3. P. 100037. DOI: 10.1016/j.aeaoa.2019.100037.
11. Verma S., Prakash D., Ricaud P., Payra S., Attié J.L., Soni M.A. New classification of aerosol sources and types as measured over Jaipur, India // Aerosol Air Qual. Res. 2015. V. 15. P. 985–993. DOI: 10.4209/aaqr.2014.07.0143.
12. Holben B.N., Tanré D., Smirnov A., Eck T.F., Slutsker I., Abuhassan N., Newcomb W.W., Schafer J.S., Chatenet B., Lavenu F., Kaufman Y.J., Van Castle J., Setser A., Markham B., Clark B., Frouin R., Halthore R., Karneli A., O'Neill N.T., Pietras C., Pinker R.T., Voss K., Zibordi G. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET // J. Geophys. Res. 2001. V. 106, N D11. P. 12067–12097. DOI: 10.1029/2001JD900014.
13. Russell P.B., Bergstrom R.W., Shinozuka Y., Clarke A.D., DeCarlo P.F., Jimenez J.L., Livingston J.M., Redemann J., Dubovik O., Strawa A. Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition // Atmos. Chem. Phys. 2010. V. 10, N 3. P. 1155–1169. DOI: 10.5194/acp-10-1155-2010.
14. Giles D.M., Holben B.N., Eck T.F., Sinyuk A., Smirnov A., Slutsker I., Dickerson R.R., Thompson A.M., Schafer J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions // J. Geophys. Res. 2012. V. 117, N D17. DOI: 10.1029/2012JD018127.
15. Lee J., Kim J., Song C.H., Kim S.B., Chun Y., Sohn B.J., Holben B.N. Characteristics of aerosol types from AERONET sunphotometer measurements // Atmos. Environ. 2010. V. 44, N 26. P. 3110–3117. DOI: 10.1016/j.atmosenv.2010.05.035.
16. Tiwari S., Srivastava A.K., Singh A.K., Singh S. Identification of aerosol types over Indo-Gangetic Basin: Implications to optical properties and associated radiative forcing // Environ. Sci. Pollut. Res. 2015. V. 22. P. 12246–12260. DOI: 10.1007/s11356-015-4495-6.
17. Dubovik O., King M. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. D. 2000. V. 105, N 16. P. 20673–20696. DOI: 10.1029/2000JD900282.
18. Holben B.N., Eck T.F., Slutsker I., Smirnov A., Sinyuk A., Schafer J., Giles D., Dubovik O. Aeronet's Version 2.0 quality assurance criteria // Remote Sens. Atmos. Clouds. 2006. V. 6408. DOI: 10.1117/ 12.706524.
19. Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A., Liu Z., Hunt W.H., Young S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms // J. Atmos. Ocean. Technol. 2009. V. 26. P. 2310–2323. DOI: 10.1175/2009JTECHA1281.1.
20. Kim M.H., Omar A.H., Tackett J.L., Vaughan M.A., Winker D.M., Trepte C.R., Hu Y., Liu Z., Poole L.R., Pitts M.C., Kar J., Magill B.E. The CALIPSO Version 4 automated aerosol classification and lidar ratio selection algorithm // Atmos. Meas. Tech. 2018. V. 11, N 11. P. 6107–6135. DOI: 10.5194/amt-11-6107-2018.
21. Omar A.H., Won J.-G., Winker D.M., Yoon S.C., Dubovik O., McCormick M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements // J. Geophys. Res. 2005. V. 110. P. D10S14. DOI: 10.1029/2004JD004874.
22. Nagovitsyna E.S., Dzholumbetov S.K., KarasevA.A., Poddubny V.A. A Regional aerosol model for the Middle Urals based on CALIPSO measurements // Atmosphere. 2024. V. 15, N 1. DOI: 10.3390/atmos15010048.
23. Poddubnyi V.A., Luzhetskaya A.P., Markelov Yu.I., Beresnev S.A., Gorda S.Yu., Sakerin S.M. Osobennosti opticheskikh kharakteristik atmosfernogo aerozolya na Srednem Urale // Izv. RAN. Fizika atmosfery i okeana. 2013. V. 9, N 3. P. 1–9. DOI: 10.7868/S0002351513030103.
24. Luzhetskaya A.P., Nagovitsyna E.S., Poddubny V.A. Impact of meteorological parameters on the daily variability of the ground-level PM2.5 concentrations according to measurements in the Middle Urals // Geography, Environment, Sustainability. 2023. V. 16, N 4. P. 172–179. DOI: 10.24057/2071-9388-2023-2824.
25. Angström A. On the atmospheric transmission of Sun radiation and on dust in the air // Georg. Ann. 1929. N 11. P. 156–166.
26. Gasteiger J., Wiegner M. MOPSMAP v1.0: A versatile tool for the modeling of aerosol optical properties // Geosci. Model Dev. 2018. V. 11. P. 2739–2762. DOI: 10.5194/gmd-11-2739-2018.
27. Jin J., Henzing B., Segers A. How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent // Atmos. Chem. Phys. 2023. V. 23, N 2. P. 1641–1660. DOI: 10.5194/acp-23-1641-2023.
28. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteorol. Soc. 2015. V. 96, N 12. P. 2059–2077. DOI: 10.1175/BAMS-D-14-00110.1.
29. MacQueen J. Some Methods for Classification and analysis of multivariate observations // Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. V. 1. P. 281–297.