The article presents the results of aircraft lidar measurements of the spatial distribution of the relative concentration of chlorophyll-a in the surface waters of the Kara Sea. The chlorophyll concentration was determined by the laser-induced fluorescence method. For normalization, the intensity of the Raman scattering signal of water radiation was simultaneously recorded. The results of the spatial distribution of the normalized fluorescence intensity were obtained at three sites in the southwestern region of the Kara Sea. For two sites in the shelf zone near the western coast of the Yamal Peninsula, the spatial distribution of the fluorescence intensity is quite uniform with variation coefficients of 9 and 15%. The third site in the northern tip of the Yamal Peninsula is characterized by a strong influence of continental river runoff, which is manifested in the presence of sharp frontal zones with scales of 5–10 km, where the variation coefficient of the normalized fluorescence intensity Cl reaches 40%. The variation in Cl values in this section is mainly due to the strong variability of the Raman normalization signals and, to a much lesser extent, to the change in fluorescence intensity. Factors influencing the variability of Raman signals are considered. Synchronous in-situ measurements from a ship and remote measurements from an aircraft allowed us to estimate the dimensional calibration coefficient kCl = 1.03 ± 0.09 mg/l for the first two sections of the Kara Sea surface water sounding.
lidar, laser-induced fluorescence, Raman scattering, chlorophyll a concentration
1. Belan B.D., Ancellet G., Andreeva I.S., Antokhin P.N., Arshinova V.G., Arshinov M.Y., Balin Yu.S., Barsuk V.E., Belan S.B., Chernov D.G., Davydov D.K., Fofonov A.V., Ivlev G.A., Kotel’nikov S.N., Kozlov A.S., Kozlov A.V., Law K., Mikhal’chishin A.V., Moseikin I.A., Nasonov S.V., Nédélec Ph., Okhlopkova O.V., Ol’kin S.E., Panchenko M.V., Paris J.-D., Penner I.E., Ptashnik I.V., Rasskazchikova T.M., Reznikova I.K., Romanovskii O.A., Safatov A.S., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Yakovlev S.V., Zenkova P.N. Integrated airborne investigation of the air composition over the Russian sector of the Arctic // Atmos. Meas. Tech. 2022. N 15. P. 3941–3967. DOI: 10.5194/amt-15-3941-2022.
2. Kravchishina M.D., Klyuvitkin A.A., Novigatskii A.N., Glukhovets D.I., SHevchenko V.P., Belan B.D. 89-i reis (1-i etap) nauchno-issledovatel'skogo sudna «Akademik Mstislav Keldysh»: klimaticheskii eksperiment vo vzaimodeistvii s samoletom-laboratoriei Tu-134 «Optik» v Karskom more // Okeanologiya. 2023. V. 63, N 3. P. 492–495. DOI: 10.31857/S0030157423030073.
3. Nasonov S., Balin Yu., Klemasheva M., Kokhanenko G., Novoselov M., Penner I., Samoilova S., Khodzher T. Mobile aerosol Raman polarizing lidar LOSA-A2 for atmospheric sounding // Atmosphere. 2020. N 11. P. 1032. DOI: 10.3390/atmos11101032.
4. Mezheris R. Lazernoe distantsionnoe zondirovanie. M.: Mir, 1987. 550 p.
5. Orlov V.M., Samokhvalov I.V., Belov M.L., Shamanaev V.S., Klimkin V.M., Belokhvostikov A.V., Penner I.E., Safin R.G., Yudovskii A.B. Distantsionnyi kontrol' verkhnego sloya okeana. Novosibirsk: Nauka, 1991. 149 p.
6. Bukin O.A., Pavlov A.N., Salyuk P.A., Golik S.S., Il'in A.A., Bubnovskii A.Yu. Lazernye tekhnologii issledovaniya okeana // Optika atmosf. i okeana. 2010. V. 23, N 10. P. 926–934.
7. Bukin O.A., Il'ichev V.I., Maior A.Yu., Pavlov A.N., Stafievskii A.G., Tyapkin V.A. Sudovoi gidrolidarnyi kompleks dlya zondirovaniya verkhnego sloya okeana // Optika atmosf. i okeana. 1994. V. 7, N 10. P. 1403–1409.
8. Kokhanenko G.P., Penner I.E., Sрamanaev V.S. Avialidarnye issledovaniya morskoi akvatorii. Pt. 1. Korotkie trassy // Optika atmosf. i okeana. 2001. V. 14, N 12. P. 1132–1136.
8. Fadeev B.B. Distantsionnoe lazernoe zondirovaniya fotosinteziruyushchikh organizmov // Kvant. elektron. 1978. V. 5, N 10. P. 2221–2226.
10. Hoge F.E., Swift R.N. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments // Appl. Opt. 1981. V. 20, N 18. P. 3197–3205. DOI: 10.1364/AO.20.003197.
11. Babichenko S., Poryvkina L., Arikese V., Kaitala S., Kuosa H. Remote sensing of phytoplankton using laser-induced-fluorescence // Remote Sens. Environ. 1993. V. 45, N 1. P. 43–50. DOI: 10.1016/0034-4257(93)90080-H.
12. Barbini R., Colao F., Fantoni R., Palucci A., Ribezzo S. Differential lidar fluorosensor system used for phytoplankton bloom and seawater quality monitoring in Antarctica // Int. J. Remote Sens. 2001. V. 22, N 2/3. P. 369–384. DOI: 10.1080/014311601449989.
13. Karabashev G.S. Flyuorestsentsiya v okeane. L.: Gidrometeoizdat, 1987. 199 p.
14. Klyshko D.N., Fadeev V.V., Distantsionnoe opredelenie kontsentratsii primesei v vode metodom lazernoi spektroskopii s kalibrovkoi po kombinatsionnomu rasseyaniyu // Dokl. AN SSSR. 1978. V. 238, N 2. P. 320–323.
15. Babichenko S.M. Laser remote sensing of the european marine environment: LIF technology and applications // Remote Sensing of the European Seas. Chapter 2. Springer, 2008, p. 189–204. DOI: 10.1007/978-1-4020-6772-3_15.
16. Prieur L., Sathyendranath Sh. An optical classification of coastal and oceanic waters based on the specific spectral absorbtion of phytoplankton pigments, dissolved organic matter and other particulate materials // Limnol. Oceanogr. 1981. V. 26. P. 671–689.
17. Bukin O.A., Permyakov M.S., Maior A.Yu., Pavlov A.N., Skorokhod G.V., Chekunkova V.V., Tsareva O.S., Tarkhova T.I. Svyaz' parametrov spektrov fluorestsentsii morskoi vody, vozbuzhdaemykh lazernym izlucheniem, s tipom morskikh vod // Optika atmosf. i okeana. 2000. V. 13, N 11. P. 1011–1014.
18. Zatsepin A.G., Zav'yalov P.O., Kremenetskii V.V., Poyarkov S.G., Solov'ev D.M. Poverkhnostnyi opresnennyi sloi v Karskom more // Okeanologiya. 2010. V. 50, N 5. P. 698–708.
19. Fedorov K.N. Fizicheskaya priroda i struktura okeanicheskikh frontov. L.: Gidrometeoizdat, 1983. 296 p.
20. Konik A.A., Zimin A.V., Atadzhanova O.A. Prostranstvenno-vremennaya izmenchivost' kharakteristik stokovoi frontal'noi zony v Karskom more v pervye dva desyatiletiya XXI veka // Fundamental'naya i prikladnaya gidrofizika. 2022. V. 15, N 4. P. 23–41. DOI: 10.48612/fpg/38mu-zda7-dpep.
21. Glukhovets D.I., Goldin Y.A. Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data // Oceanologia. 2020. V. 62, N 3. P. 364–373. DOI: 10.1016/j.oceano.2020.04.002.
22. Kopelevich O.V., Saling I.V., Vazyulya S.V., Glukhovets D.I., Sheberstov S.V., Burenkov V.I., Karalli P.G., Yushmanova A.V. Bioopticheskie kharakteristiki morei, omyvayushchikh berega zapadnoi poloviny Rossii, po dannym sputnikovykh skanerov tsveta 1998–2017 years. M.: VASH FORMAT, 2018. 140 p.
23. Kravchishina M., Politova N., Klyuvitkin A., Lokhov A., Migdisova I., Kudryavtseva E., Penner I., Ambrosimov A., Schuka A., Novigatsky A. Characterization of suspended particulate matter in the South Kara Sea (Arctic Ocean) in September 2022 as part of the climate experiment // Proc. SPIE. V. 12780. 2023. DOI: 10.1117/12.2692937.
24. Optika okeana. V. 1. Fizicheskaya optika okeana / pod red. A.S. Monina. M.: Nauka, 1983. 372 p.
25. Kokhanenko G.P., Penner I.E., Shamanaev V.S., Ladbruk Dzh., Skott A. Lazernoe zondirovanie akvatorii ozera Baikal // Optika atmosf. i okeana. 1999. V. 12, N 1. P. 39–45.
26. Kokhanenko G.P., Balin Yu.S., Penner I.E., Shamanaev V.S. Lidarnye i in situ izmereniya opticheskikh parametrov poverkhnostnykh sloev vody v ozere Baikal // Optika atmosf. i okeana. 2011. V. 24, N 5. P. 377–385.
27. Bukin O.A., Permyakov M.S., Salyuk P.A., Maior A.Yu., Burov D.V., Khovanets V.A., Golik S.S., Podoprigora E.L. Osobennosti formirovaniya spektrov lazernoi indutsirovannoi fluorestsentsii morskoi vody v period tsveteniya vodoroslei v razlichnykh raionakh Mirovogo okeana // Optika atmosf. i okeana. 2004. V. 17, N 9. P. 742–749.
28. Bukin O.A., Salyuk P.A., Maior A.Yu., Pavlov A.N. Issledovanie protsessov vosproizvodstva organicheskogo veshchestva kletkami fitoplanktona metodom lazernoi indutsirovannoi fluorestsentsii // Optika atmosf. i okeana. 2005. V. 18, N 11. P. 976–983.
29. Eizenberg D., Kautsman V. Struktura i svoistva vody. L.: Gidrometeoizdat, 1975. 280 p.
30. Walrafen G.E. Raman spectral studies of the effects of temperature on water structure // J. Chem. Phys. 1967. V. 47. P. 114. DOI: 10.1063/1.1711834.
31. Leonard D.A., Caputo B., Hoge F.E. Remote sensing of subsurface water temperature by Raman scattering // Appl. Opt. 1979. V. 18, N 11. P. 1732–1745. DOI: 1364/AO.18.001732.
32. Bekkiev A.Yu., Gogolinskaya T.A., Fadeev V.V. Odnovremennoe opredelenie temperatury i solenosti morskoi vody metodom lazernoi KR-spektroskopii // Dokl. AN SSSR. 1983. V. 271, N 4. P. 849–853.
33. Ricciardulli L., Wentz F.J. Remote Sensing Systems ASCAT C-2015 Daily Ocean Vector Winds on 0.25 deg grid, Version 02.1, Santa Rosa, CA: Remote Sensing Systems, 2016. URL: www.remss.com (last access: 10.04.2023).
34. Pavlov V.K., Pfirman S.L. Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution // Deep Sea Res., Part III. 1995. V. 42, N 6. P. 1369–1390. DOI: 10.1016/0967-0645(95)00046-1.
35. Fedorov K.N., Ginzburg A.I. Poverkhnostnye yavleniya v okeane // Okeanologiya. 1986. V. 26, iss. 1. P. 5–14.
361. Serebryanyi A.N. Sliko- i suloeobrazuyushchie yavleniya v more. Fronty razlichnogo proiskhozhdeniya // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2012. V. 9, N 5. P. 231–240.
37. Saling I.V., Vazyulya S.V., Glukhovets D.I., Sheberstov S.V., Burenkov V.I. Atlas bioopticheskikh kharakteristik rossiiskikh morei po dannym sputnikovykh skanerov tsveta. M.: Laboratoriya optiki okeana IO RAN, 2023. URL: https://optics.ocean.ru (data obrashcheniya: 1. 16.12.2023).
38. Vazyulya S.V., Kopelevich O.V., Sheberstov S.V., Artem'ev V.A. Otsenka po sputnikovym dannym pokazatelei pogloshcheniya okrashennogo organicheskogo veshchestva i diffuznogo oslableniya solnechnogo izlucheniya v vodakh Belogo i Karskogo morei // Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa. 2014. V. 11, N 4. P. 31–41.
39. Svergun E.I, Zimin A.V., Atadzhanova O.A., Konik A.A., Zubkova E.V., Kozlov I.E. Izmenchivost' frontal'nykh razdelov i korotkoperiodnye vnutrennie volny v Barentsevom i Karskom moryakh po dannym sputnikovykh nablyudenii za teplyi period 2007 year // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. V. 15, N 4. P. 181–188.
40. Jakobsson M., Mayer L.A., Bringensparr C., Castro C.F., Mohammad R., Johnson P., Ketter T., Accettella D., Amblas D., An L., Arndt J.E., Canals M., Casamor J.L., Chauché N., Coakley B., Danielson S., Demarte M., Dickson M.-L., Dorschel B., Dowdeswell J.A., Dreutter S., Fremand A.C., Gallant D., Hall J.K., Hehemann L., Hodnesdal H., Hong J., Ivaldi R., Kane E., Klaucke I., Krawczyk D.W., Kristoffersen Y., Kuipers B.R., Millan R., Masetti G., Morlighem M., Noormets R., Prescott M.M., Rebesco M., Rignot E., Semiletov I., Tate A.J., Travaglini P., Velicogna I., Weatherall P., Weinrebe W., Willis J.K., Wood M., Zarayskaya Yu., Zhang T., Zimmermann M., Zinglersen K.B. The International Bathymetric Chart of the Arctic Ocean Version 4.0 // Sci. Data. 2020. V. 7. P. 176. DOI: 10.1038/s41597-020-0520-9.
41. Bouden K. Fizicheskaya okeanografiya pribrezhnykh vod. M.: Mir, 1988. 324 p.
42. Yukhnevich G.V., Volkov V.V. Polosa valentnykh kolebanii i struktura zhidkoi vody // Dokl. AN. 1997. V. 353, N 4. P. 465–468.
43. Sun Q. The Raman OH stretching bands of liquid water // Vibrational Spectrosc. 2009. V. 51. P. 213–217. DOI: 10.1016/j.vibspec.2009.05.002.
44. Walrafen G.E., Hokmabadi M.S., Yang W.H. Raman isosbestic points from liquid water // J. Chem. Phys. 1986. V. 85. P. 6964–6969. DOI: 10.1063/1. 451383.
45. Whiteman D.N., Walrafen G.E., Yang W.-H., Melfi S.H. Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry // Appl. Opt. 1999. V. 38, N 12. P. 2614–2615. DOI: 10.1364/AO.38.002614.
46. Horn R. Morskaya khimiya (struktura vody i khimiya gidrosfery). M.: Mir, 1972. 400 p.
47. Glushkov S.M., Panchishin I.M., Fadeev V.V. Nablyudenie «anomal'nykh» spektrov kombinatsionnogo rasseyaniya sveta pri fazovom perekhode voda – led // Dokl. AN SSSR. 1986. V. 291, N 4. P. 836–839.
48. Glushkov S.M., Panchishin I.M., Fadeev V.V. Lazernaya diagnostika geterofaznykh vodnykh ob"ektov // Optika atmosf. i okeana. 1988. V. 1, N 12. P. 80–86.
49. Andreeva N.P., Bunkin A.F., Pershin S.M. Deformation of the Raman scattering spectrum of Ih ice under local laser heating near 0 °C // Opt. Spectrosc. 2002. V. 93. P. 252–256. DOI: 10.1134/1.1503755.
50. Pershin S.M. Nablyudenie l'dopodobnogo sostoyaniya v pereokhlazhdennoi vode i ego razrushenie impul'sami lazera // Opt. i spektroskop. 2003. V. 95, N 4. P. 628–636.
51. Cunningham K., Lyons P.A. Depolarization ratio studies on liquid water // J. Chem. Phys. 1973. V. 59, N 4. P. 2132–2139. DOI: 10.1063/1.1680299.
52. Pattenaude S.R., Streacker L.M., Ben-Amotz D. Temperature and polarization dependent Raman spectra of liquid H2O and D2O // J. Raman Spectrosc. 2018. V. 49. P. 1860–1866. DO: 10.1002/jrs.5465.
53. Schultz J.W., Hornig D.F. The effect of dissolved alkali halides on the Raman spectrum of water // J. Phys. Chern. 1961. V. 65, N 12. P. 2131–2139. DOI: 10.1021/j100829a005.