Vol. 38, issue 02, article # 6

Konoshonkin A. V., Kustova N. V., Shishko V. A., Timofeev D. N., Babinovich A. E. Optical model of cirrus clouds with preferentially oriented particles for lidar applications. // Optika Atmosfery i Okeana. 2025. V. 38. No. 02. P. 125–133. DOI: 10.15372/AOO20250206 [in Russian].
Copy the reference to clipboard
Abstract:

The study of cirrus clouds is currently under close attention since they play an important role in the formation of the Earth’s climate. Their study is mainly conducted through laser sounding of the atmosphere. The interpretation of laser sounding data requires an adequate optical model of cirrus clouds. However, most existing optical models are developed assuming a random spatial orientation of particles, which, according to recent experimental data, is often inaccurate. We suggest an optical model of cirrus clouds which considers the preferential horizontal orientation of particles within a cloud. The model includes ideal hexagonal plates and columns and hollow columns as quasi-horizontally oriented particles. Additionally, the model incorporates hexagonal plates and columns, droxtalls and bullites, irregularly shaped particles, and aggregates of such particles as randomly oriented particles. The results are crucial for developing algorithms of lidar data interpretation when investigating cirrus clouds.

Keywords:

cirrus cloud, optical model, laser sounding, light scattering, physical optics method, atmospheric ice crystal, horizontal orientation

Figures:
References:

1. Okamoto H., Sato K., Hagihara Y. Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals // J. Geophys. Res. 2010. V. 115, N D22. P. D22209. DOI: 10.1029/2009JD013383.
2. Climate change 2007 – the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 996 р..
3. Liou K.N. Influence of cirrus clouds on the weather and climate process: A global perspective // Mon. Weather Rev. 1986. V. 114, N 6. P. 1167–1199. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
4. Kohanenko G.P., Balin Yu.S., Borovoj A.G., Novoselov M.M. Issledovaniya orientacii kristallicheskih chastits v ledyanyh oblakah skaniruyushchim lidarom // Optika atmosf. i okeana. 2022. V. 35, N 4. P. 319–325. DOI: 10.15372/AOO20220412; Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Studies of the orientation of crystalline particles in ice clouds by a scanning lidar // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 509–516.
5. Del Guasta M. Simulation of lidar returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of “face-tracing” // J. Geophys. Res. 2001. V. 106, N D12. P. 12589–12602. DOI: 10.1029/2000JD900724.
6. Del Guasta M. A second-generation ray-tracing technique applied to lidar returns from ice clouds // Proc. MUSCLE X. Florence, 1999. P. 48–57.
7. Lakkis G.S., Lavorato M., Canziani P., Lacomi H. Lidar observations of cirrus clouds in Buenos Aires // J. Atmos. Sol.-Terr. Phys. 2015. V. 130–131. P. 89–95. DOI: 10.1016/j.jastp.2015.05.020.
8. Reichardt J., Reichardt S., Lin R.-F., Hess M., McGee T.J., Starr D.O. Optical-microphysical cirrus model // J. Geophys. Res. 2008. V. 113, N D22. P. D22201. DOI: 10.1029/2008JD010071.
9. Tinel C., Testud J., Pelon J., Hogan R.J., Protat A., Delanoë J., Bouniol D. The retrieval of ice-cloud properties from cloud radar and lidar synergy // J. Appl. Meteorol. 2005. V. 44, N 6. P. 860–875. DOI: 10.1175/JAM2229.1.
10. Katagiri S., Hayasaka T., Shimizu A., Matsui I., Nishizawa T., Sugimoto N., Takamura T. Long term analysis of cirrus clouds’ effects on shortwave and longwave radiation derived from data acquired by ground-based and satellite-borne observations // AIP Conf. Proc. 2013. V. 1531. P. 492–495. DOI: 10.1063/1.4804814.
11. Sassen K., Wang Z., Liu D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared Pathfinder satellite observations (CALIPSO) measurements // J. Geophys. Res. 2008. V. 113, N D8. P. D00A12. DOI: 10.1029/2008JD009972.
12. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Cole B.H., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 123–139. DOI: 10.1016/j.jqsrt.2014.02.029.
13. Baum B.A., Yang P., Heymsfield A.J., Schmitt C.G., Xie Y., Bansemer A., Hu Y.-X., Zhang Z. Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds // J. Appl. Meteorol. Clim. 2011. V. 50, N 5. P. 1037–1056. DOI: 10.1175/2010JAMC2608.1.
14. Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23. P. 11995–12003. DOI: 10.1364/OE.23.011995.
15. Hess M., Wiegner M. COP: A data library of optical properties of hexagonal ice crystals // Appl. Opt. 1994. V. 33, N 33. P. 7740–7746. DOI: 10.1364/AO.33.007740.
16. Noel V., Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations // J. Appl. Meteorol. 2005. V. 44, N 5. P. 653–664. DOI: 10.1175/JAM2223.1.
17. Balin Yu.S., Kaul' B.V., Kohanenko G.P. Nablyudeniya zerkal'no otrazhayushchih chastic i sloev v kristallicheskih oblakah // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 293–299.
18. Sassen K., Kayetha V.K., Zhu J. Ice cloud depolarization for nadir and off-nadir CALIPSO measurements // Geophys. Res. Lett. 2012. V. 39, N 20. P. L20805. DOI: 10.1029/2012GL053116.
19. Wang Z., Liu D., Xie C., Zhou J. An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer // J. Opt. Soc. Korea. 2011. V. 15, N 3. P. 209–215. DOI: 10.3807/JOSK.2011.15.3.209.
20. Konoshonkin A.V., Borovoj A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoj optiki. M.: FIZMATLIT, 2022. 384 p.
21. Konoshonkin A.V., Borovoj A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoj optiki. Novosibirsk: Izd-vo SO RAN, 2020. 219 p.
22. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189. DOI: 10.1016/j.jqsrt.2014.04.030.
23. Konoshonkin A., Borovoi A., Kustova N., Reichardt J. Power laws for backscattering by ice crystals of cirrus clouds // Opt. Express. 2017. V. 25, N 19. P. 22341–22346. DOI: 10.1364/OE.25.022341.
24. Timofeev D.N., Konoshonkin A.V., Kustova N.V. Algoritm Modified beam-splitting 1 (MBS-1) dlya resheniya zadachi rasseyaniya sveta na nevypuklyh ledyanyh atmosfernyh chasticah // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 473–480. DOI: 10.15372/AOO20180609; Timofeev D.N., Konoshonkin A.V., Kustova N.V. Modified Beam-Splitting 1 (MBS-1) Algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 642–649.
25. Kustova N., Konoshonkin A., Shishko V., Timofeev D., Borovoi A., Wang Zh. Coherent backscattering by large ice crystals of irregular shapes in cirrus clouds // Atmosphere. 2022. V. 13, N 8. P. 1279. DOI: 10.3390/atmos13081279.
26. Timofeev D., Kustova N., Shishko V., Konoshonkin A. Light-scattering properties for aggregates of atmospheric ice crystals within the physical optics approximation // Atmosphere. 2023. V. 14, N 6. P. 933. DOI: 10.3390/atmos14060933.
27. Konoshonkin A.V., Kustova N.V., Shishko V.A., Timofeev D.N., Babinovich A.E. Matrica rasseyaniya sveta dlya gorizontal'no orientirovannyh ledyanyh chastits peristyh oblakov vida «plastinka», «stolbik» i «polyj stolbik» // Optika atmosf. i okeana. 2024. V. 37, N 12. P. 1061–1068. DOI: 10.15372/AOO20241210.
28. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1492–1508. DOI: 10.1016/j.jqsrt.2011.02.015.
29. Wehr T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission – science and system overview // Atmos. Meas. Tech. 2023. V. 16, N 15. P. 3581–3608. DOI: 10.5194/amt-16-3581-2023.
30. Samohvalov I.V., Bryuhanova V.V., Bryuhanov I.D., Doroshkevich A.A., Zhivotenyuk I.V., Volkov S.N., Kirillov N.S., Ni E.V., Stykon A.P., Loktyushin O.Yu. Obnaruzhenie v oblakah verhnego yarusa matrichnym polyarizacionnym lidarom lokal'nyh oblastej gorizontal'no orientirovannyh ledyanyh chastic i issledovanie ih harakteristik // Aktual'nye problemy radiofiziki APR-2023: cb. trudov X Mezhdunar. nauch.-prakt. konf. Tomsk, 2023. P. 201–203.
31. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983. 530 p.
32. Van de Hyulst G. Rasseyanie sveta malymi chasticami. M.: Izdatel'stvo inostrannoj literatury, 1961. 537 p.
33. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 p.
34. Kaul' B.V. Simmetrii matric obratnogo rasseyaniya sveta v svyazi s orientaciej nesfericheskih aerozol'nyh chastits // Optika atmosf. i okeana. 2000. V. 13, N 10. P. 895–900.
35. Gil-Díaz C., Sicard M., Comerón A., dos Santos Oliveira D.C.F., Muñoz-Porcar C., Rodríguez-Gómez A., Lewis J.R., Welton E.J., Lolli S. Geometrical and optical properties of cirrus clouds in Barcelona, Spain: Analysis with the two-way transmittance method of 4 years of lidar measurements // Atmos. Meas. Tech. 2024. V. 17, N 4. P. 1197–1216. DOI: 10.5194/amt-17-1197-2024.