Method for detecting most forms of altocumulus, stratocumulus, and cumulus clouds and their middle (4–7) and high (8–10) amount is proposed. The method is based on statistical analysis of continuous series of measured global horizontal irradiance. Clouds are classified into two classes according to their influence on the heterogeneity of the formed series. The analysis uses the coefficient of variation and the range of sample. Testing of the method showed that cumuliform clouds are detected with accuracy of 94% at sample completeness of 63%, and the cloud amount is assessed with an error of less than 21%.
cloud cover, global horizontal irradiance, cloud amount, monitoring
1. Nastavlenie gidrometeorologicheskim stantsiyam i postam. «Meteorologicheskie nablyudeniya na stantsiyakh»: Iss. 3, pt. I. / pod red. O.A. Gorodetskogo. L.: Gidrometeoizdat, 1995. 299 p.
2. Kapustin A.V. Tekhnicheskie sredstva gidrometeorologicheskoi sluzhby. SPb.: Energomashinostroenie, 2005. 283 p.
3. Hsu-Yung Cheng, Chih-Lung Lin. Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques // Atmos. Meas. Tech. Discuss. 2016. P. 1–20. DOI: 10.5194/amt-2016-169.
4. Gonzalez Y., Lopez C., Cuevas E. Automatic observation of cloudiness: Analysis of all-sky images // WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Brussels (Belgium), 16–18 October, 2012. P. 1–6.
5. Kazantzidis A., Tzoumanikas P., Bais A.F., Fotopoulos S., Economou G. Cloud detection and classification with the use of whole-sky ground-based images // Atmos. Res. 2012. V. 113. P. 80–88. DOI: 10.1016/j.atmosres.2012.05.005.
6. Tulpan D., Bouchard C., Ellis K., Minwalla C. Detection of clouds in sky/cloud and aerial images using moment based texture segmentation // International Conference on Unmanned Aircraft Systems. 2017. P. 1124–1133. DOI: 10.1109/ICUAS.2017.7991380.
7. Automatic total sky imager model TSI-880. URL: http://www.yesinc.com/resource/products/skyimaging/tsi-880ds.pdf (дата обращения: 18.06.2024).
8. Panoramno-opticheskaya stantsiya „TomSky“. URL: https://sky.iao.ru/about (data obrashcheniya: 22.10.2024).
9. Krinitskii M.A. Apparatnyi kompleks i algoritmy, osnovannye na metodakh mashinnogo obucheniya, dlya izmereniya kharakteristik oblachnosti nad okeanom. URL: https://disser.ocean.ru/index.php/dissertatsii/file/812-tekst-dissertatsii-krinitskij.html (data obrashcheniya: 18.06.2024).
10. Duchon C.E., O'Malley M.S. Estimating cloud type from pyranometer observations // J. Appl. Meteorol. 1999. V. 38. Р. 132–141. DOI: 10.1175/1520-0450(1999)038<0132:ECTFPO>2.0.CO;2.
11. Lusi A., Orte F., Wolfram E., Orlando J.I. Cloud classification through machine learning and global horizontal irradiance data analysis // Q. J. R. Meteorol. Soc. 2024. P. 1–17. DOI: 10.1002/qj.4880.
12. Martinez-Chico M., Batlles F.J., Bosch J.L. Cloud classification in a mediterranean location using radiation data and sky images // Energy. 2011. V. 36. P. 4055–4062. DOI: 10.1016/j.energy.2011.04.043.
13. Zuev S.V., Krasnenko N.P. Monitoring cumulus clouds using global horizontal irradiance data // IOP Conference Series: Earth Environ. Sci. 2020. V. 611. P. 012003. DOI: 10.1088/1755-1315/611/1/012003.
14. Zuev S.V., Zolotov S.Yu. Determination of Cu amount using global horizontal irradiance // Proc. SPIE. 2023. V. 12780. P. 127802X. DOI: 10.1117/12.2690416.
15. Skorokhodov A.V., Astafurov V.G., Evsyutkin T.V. Primenenie statisticheskikh modelei tekstury izobrazhenii i fizicheskikh parametrov oblakov dlya ikh klassifikatsii na sputnikovykh snimkakh MODIS // Issled. Zemli iz kosmosa. 2018. N 4. P. 43–58. DOI: 10.31857/S020596140002355-1.
16. Kostornaya A.A., Saprykin E.I., Zakhvatov M.G., Tokareva Yu.V. Metod deshifrirovaniya oblachnogo pokrova po sputnikovym dannym // Meteorol. i gidrol. 2017. N 12. P. 16–24.
17. Volkova E.V., Uspenskii A.B. Otsenki parametrov oblachnogo pokrova po dannym radiometra AVHRR IS3 NOAA regional'nogo pokrytiya v svetloe vremya sutok v avtomaticheskom rezhime // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2007. V. 4, N 2. P. 65–73.
18. Arguchintseva A.V. Metody statisticheskoi obrabotki i analiza gidrometeorologicheskikh nablyudenii. Irkutsk: Irkut. gos. un-t, 2007. 105 p.
19. Zuev S.V. Determination of diffuse and direct irradiance under cumulus clouds using pyranometer data // Proc. SPIE. 2022. V. 12341. P. 1234107. DOI: 10.1117/ 12.2643766.
20. Fawcett T. An introduction to ROC analysis // Pattern Recognit. Lett. 2006. V. 27, N 8. P. 861–874. DOI: 10.1016/j.patrec.2005.10.010.