Vol. 38, issue 02, article # 8

Tel'minov E. N., Berdybaeva Sh. T., Solodova T. A., Kurtsevich А.Е. . Dye-based waveguide laser sensor for detecting atmospheric gases. // Optika Atmosfery i Okeana. 2025. V. 38. No. 02. P. 140–145. DOI: 10.15372/AOO20250208 [in Russian].
Copy the reference to clipboard
Abstract:

An integral component of any analyzer is a sensor. Interest in the development of highly efficient sensing elements for detecting various substances in the surrounding atmosphere remains strong. Among many types of sensors, optical sensors capable of operating in laser mode stand out due to their superior sensitivity compared to fluorescent sensors. This study describes the sensory properties of a photo-excitable active waveguide with a polymethyl methacrylate matrix doped with Nile Red dye. The threshold characteristics of the dye laser generation are investigated. Sensitivity is shown for 0.8% carbon dioxide in an argon mixture and 0.8% nitrous oxide in an argon mixture at atmospheric pressure within the active waveguide under lasing conditions. Possible mechanisms for reducing the lasing threshold in the presence of detectable substances are discussed.

Keywords:

thin-film laser, planar waveguide, fluorescent sensor, laser generation, analyte, carbon dioxide, nitrous oxide

Figures:
References:

1. Kohl D. Function and applications of gas sensors // J. Phys. D: App. Phys. 2001. V. 34, N 19. P. 125–149. DOI: 10.1088/0022-3727/34/19/201.
2. Ampuero S., Bosset J.O. The electronic nose applied to dairy products: A review // Sens. Act. B: Chem. 2003. V. 94, N 1. P. 1–12. DOI: 10.1016/S0925-4005(03)00321-6.
3. Rin J., Maroto A., Rius F.X. Nanosensors in environmental analysis // Talanta. 2006. V. 69, N 2. P. 288–301. DOI: 10.1016/j.talanta.2005.09.045.
4. Egorov A.A. Teoriya absorbtsionnogo integral'no-opticheskogo datchika gazoobraznykh veshchestv // Opt. i spektroskop. 2010. V. 109, N 4. P. 678–688.
5. Song W.Q., Cui Y.Z., Tao F.R., Xu J.K., Li T.D. Conjugated polymers based on poly(fluorenylene ethynylene)s: Syntheses and sensing performance for nitroaromatics // Opt. Mat. 2015. V. 42. P. 225–232. DOI: 10.1016/j.optmat.2015.01.013.
6. Gillanders R.N., Samuel I.D.W., Turnbull G.A. A low cost, portable optical explosive-vapor sensor // Sens. Act. B: Chem. 2017. V. 245. P. 334–340. DOI: 10.1016/j.snb.2017.01.178.
7. Berdybaeva Sh.T., Samsonova L.G., Tel'minov E.N., Kopylova T.N. Tushenie fluorestsentsii nekotorykh organicheskikh soedinenii v prisutstvii parov nitrotoluolov // Izv. vuzov. Fizika. 2019. V. 62, N 1. P. 148–152.
8. Wang Y., Yang Y., Turnbull G.A., Samuel I.D.W. Explosive sensing using polymer lasers // Mol. Crys. Liq. Сrys. 2012. V. 554, N 1. P. 103–110. DOI: 10.1080/15421406.2012.63381.
9. Artyukhov V.Ya., Kopylova T.N., Samsonova L.G., Selivanov N.I., Plotnikov V.G., Sazhnikov V.A., Hlebunov A.A., Maier G.V., Alfimov M.V. Kompleksnyi podkhod k issledovaniyu fotoniki molekul // Izv. vuzov. Fiz. 2008. V. 51, N 10. P. 93–107.
10. Samsonova L.G., Selivanov N.I., Kopylova T.N., Artyukhov V.Ya., Maier G.V., Plotnikov V.G., Sazhnikov V.A., Hlebunov A.A., Alfimov M.V. Eksperimental'noe i teoreticheskoe issledovanie spektral'no-lyuminestsentnykh svoistv ryada akridinovykh soedinenii // Himiya vysokikh energii. V. 43, N 2. P. 149–159. DOI: 10.1134/S0018143909020076.
11. Berdybaeva Sh.T., Telminov E.N., Solodova T.A., Nikonova E.N., Samsonova L.G., Kopylova T.N. Spontaneous and stimulated emission of polymer thin-film structures in the presence of vapors of nitroaromatic compounds // Quan. El. 2021. V. 51, N 3. P. 206. DOI: 10.1070/QEL17491.
12. Hansperdzher R. Integral'naya optika: Teoriya i tekhnologiya. M.: Mir, 1985. 380 p.