Theoretical studies of the ways of increasing the efficiency of second harmonic generation (SHG) in visible lasers are relevant because of common use of UV radiation in different scientific and engineering problems. The work compares three most common approaches to second harmonic generation: SHG(L), where laser radiation (LR) is guided directly into a crystal (without additional optics); SHG(F), where LR is focused into a crystal by a spherical lens; and SHG(T), where LR is compressed by a lens (or mirror) telescope before entering a crystal. The SHG efficiency is shown to be maximal at optimal transverse size of LR in a crystal, which depends on LR amplitude profile in a cross section. When SHG is implemented under near-optimal conditions, SHG(F) is the most effective. If the transverse size of LR in a crystal is noticeably larger than optimal, SHG(F) is the least effective. It is shown that the gain in SHG efficiency, which is provided by replacing a long-focus lens with a suitable telescope, can exceed 100% with an increase in the transverse size of LR in a crystal and for super-Gaussian beams. In the first part of this paper, all the results are obtained in the preset field approximation. The refined results (with a strict solution of a set of nonlinear wave equations) will be presented in the second part. The results of the study can be useful for developing efficient frequency converters for metal vapor lasers.
second harmonic generation, set of nonlinear equations, preset field approximation, nonlinear process optimization, amplitude profile
1. Dmitriev V.G., Tarasov L.V. Prikladnaya nelineinaya optika. 2-e izd. M.: Fizmatlit, 2004. 512 p.
2. Kato K. Second Harmonic Generation to 2048 A in b–BaB2O4 // IEEE J. Quantum Electron. 1986. V. QE-22, N 7. P. 1013–1014. DOI: 10.1109/JQE.1986.1073097.
3. Soldatov A.N., Solomonov V.I. Gazorazryadnye lazery na samoogranichennyh perehodah v parah metallov. Novosibirsk: Nauka, 1985. 151 p.
4. Grigor'yants A.G., Kazaryan M.A., Lyabin N.A. Lazery na parah medi. M.: Fizmatlit, 2005. 312 p.
5. Elaev V.F., Lyah G.D., Pelenkov V.P. CuBr-lazer so srednei moshchnost'yu generatsii svyshe 100 Wt // Optika atmosf. 1989. V. 2, N 11. P. 1228–1229.
6. Kostadinov I.K., Temelkov K.A., Astadjov D.N., Slaveeva S.I., Yankov G.P., Sabotinov N.V. High-power copper bromide vapor laser // Opt. Commun. 2021. V. 501. DOI: 10.1016/j.optcom.2021.127363.
7. Esserman L., Conradson S. Potential medical applications of UV free-electron lasers // Free-Electron Laser Applications in the Ultraviolet Optica Publishing Group, 1988. DOI: 10.1364/FEL.1988.FC6.
8. Bolanos J., Morris K., Sanchez E., Arevalo I., Yamamoto V., Kateb B., Kumar L. UV Imaging for intraoperative tumor delineation // 20th Annual World Congress of SBMT. 2023. DOI: 10.13140/RG.2.2. 25245.18405.
9. Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-elektronnaya svyaz' v UF-diapazone na rasseyannom lazernom izluchenii // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 559–562. DOI: 10.15372/AOO20180709; Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optoelectronic UV communication on scattered laser radiation // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 698–701.
10. Isaev A.A., Lemmerman G.Yu., Malafeev G.L., Kazaryan M.A. Generatsiya vtoroi garmoniki izlucheniya impul'snogo lazera na parah medi // Kvant. elektron. 1980. N 8. P. 1700–1704.
11. Karpuhin V.T., Malikov M.M. Nelineinoe preobrazovanie chastot izlucheniya lazera na parah medi v sfokusirovannom i parallel'nom puchkah // ZHurn. tehn. fiziki. 2000. V. 70, iss. 4. P. 87–89.
12. Ramakanta B., Praveen K.A., Sudhir K.D., Shankar V.N. Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation at 271.2 nm // Appl. Opt. 2015. V. 54, N 32. P. 9613–9621. DOI: 10.1364/AO.54.009613.
13. Kolosov V.V., Troitskii V.O. Opisanie kogerentnyh svoistv izlucheniya lazera na parah medi // Optika atmosf. i okeana. 1993. V. 6, N 8. P. 1005–1012.
14. Bakiev A.M., Valiev S.H. Vremennye i spektral'no-vremennye osobennosti vnutrirezonatornogo izlucheniya aktivnoi sredy na parah medi // Kvant. elektron. 1989. V. 16, N 12. P. 2644–2646.
15. Little C.E. Metal Vapor Lasers: Physics, Engineering and Applications. Chichester (UK): J. Wiley & Sons, 1999. 620 p.
16. Boyd G.D., Kleinman D.A. Parametric interaction of focused Gaussian light beams // J. Appl. Phys. 1968. V. 39, N 8. P. 3597–3639. DOI: 10.1063/1.1656831.
17. Troitskii V.O. Nekotorye voprosy optimal'noi fokusirovki pri generatsii vtoroi garmoniki v nelineinyh kristallah. Part 2. Rezul'taty chislennyh raschetov // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 941–949. DOI: 10.15372/AOO20151012; Troitskii V.O. Some problems of optimum focusing in the process of second harmonic generation in nonlinear crystals. Part 2. Results of numerical calculations // Atmos. Ocean. Opt. 2016. V. 29, N 2. P. 199–207.
18. Troitskii V.O. Vliyanie formy amplitudnogo profilya sfokusirovannogo lazernogo izlucheniya na effektivnost' generatsii vtoroi garmoniki // Optika atmosf. i okeana. 2023. V. 36, N 12. P. 1027–1037. DOI: 10.15372/AOO20231210; Troitskii V.O. Effect of laser beam amplitude profile on second harmonic generation efficiency // Atmos. Ocean. Opt. 2024. V. 37, N 2. P. 271–280.
19. Nikogosyan D.N. Materialy dlya nelineinoi optiki // Kvant. elektron. 1997. N 1. P. 5–25.
20. Troitskii V.O. Optimizatsiya protsessa generatsii vtoroi garmoniki pri ogranichennoi plotnosti moshchnosti osnovnogo izlucheniya. Part 2 // Optika atmosf. i okeana. 2022. V. 35, N 4. P. 271–278. DOI: 10.15372/AOO20220404; Troitskii V.O. Second harmonic generation optimization under limited power density of fundamental radiation: Part 2 // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 594–600.
21. Kolosov V.V., Troitskii V.O. Priblizhennaya metodika resheniya zadachi o generatsii vtoroi garmoniki v nelineinyh kristallah. Part 2 // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 1012–1019. DOI: 10.15372/AOO20191210; Kolosov V.V., Troitskii V.O. Approximate technique for solving the problem of second harmonic generation in nonlinear crystals: Part 2 // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 312–319.
22. Born M., Vol'f E. Osnovy optiki. 2-e izd. M.: Nauka, 1973. 719 p.
23. Tvorogov S.D., Troitskii V.O. Tochnye i priblizhennye predstavleniya dlya lazernogo puchka v odnoosnoi, odnorodnoi srede // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 744–753.
24. Kolosov V.V., Troitskii V.O. Paraksial'noe priblizhenie dlya zadachi rasprostraneniya puchkov v ploskosloistoi srede // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 754–759.
25. Vinogradova M.B., Rudenko O.V., Suhorukov A.P. Teoriya voln. 2-oe izd. M.: Nauka, 1990. 432 p.
26. Litvinov O.S., Gorelik V.S. Elektromagnitnye volny i optika. M.: MGTU im. N.E. Baumana, 2006. 448 p.