Vol. 38, issue 04, article # 3

Bazhenov O. E. Influence of sulfur dioxide on stratospheric polar cloud formation and ozone destruction in the winter-spring stratosphere of the Arctic based on Aura MLS observations. // Optika Atmosfery i Okeana. 2025. V. 38. No. 04. P. 263–270. DOI: 10.15372/AOO20250403 [in Russian].
Copy the reference to clipboard
Abstract:

The sulfur dioxide (SO2) plays a key role in the winter-spring stratosphere of the Arctic because the sulfur compounds SO2 and H2SO4 (together with nitric acid HNO3) are the primary construction materials going to form the polar stratospheric clouds (PSCs). This paper studies the maximal SO2 concentrations and total SO2 columns at four Arctic sites: Eureka (Canada), Ny-Ålesund (Norway), Thule (Greenland), and Resolute (Canada) based on data on the minimal temperature, maximal negative deviations of ozone concentration from multiyear average, maximal sulfur dioxide concentration in the Arctic stratosphere, and the total ozone and sulfur dioxide columns calculated from the corresponding altitude profiles. The temperature and ozone mixing ratio profiles are obtained from the Aura MLS observations for 2005–2022; the sulfur dioxide mixing ratio profiles are calculated from Aura MLS observations for 2010/11, 2019/20, 2020/21, and 2021/22. The results can be useful for studying of how SO2 affects the PSC formation and O3 destruction in the winter-spring stratosphere of the Arctic.

Keywords:

ozone, sudden stratospheric warming, polar night, sulfur dioxide, temperature, Aura MLS observations, mixing ratio profile

Figures:
References:

1. Smyshlyaev S.P., Galin V.Ya., Shaariibuu G., Motsakov M.A. Modelirovanie izmenchivosti gazovyh i aerozol'nyh sostavlyayushchih v stratosfere polyarnyh raionov // Fiz. atmosf. i okeana. 2010. V. 46, N 3. P. 291–306.
2. Assessment of Stratospheric Aerosol Properties (ASAP), SPARC Report No. 4. February 2006 / L. Thomason, T. Peter (eds). SPARC, 2006. 322 р.
3. Kremser S., Thomason L.W., von Hobe M., Hermann M., Deshler T., Timmreck C., Toohey M., Stenke A., Schwarz J.P., Weigel R., Fueglistaler S., Prata F.J., Vernier J.-P., Schlager H., Barnes J.E., Antuña-Marrero J.-K., Fairlie D., Palm M., Mahieu E., Notholt J., Rex M., Bingen C., Vanhellemont F., Bourassa A., Plane J.M., Klocke D., Carn S.A., Clarisse L., Trickl T., Neely R., James A.D., Rieger L., Wilson J.C., Meland B. Stratospheric aerosol – observations, processes, and impact on climate // Rev. Geophys. 2016. V. 54. P. 278–335. DOI: 10.1002/2015RG000511.
4. Weber M., Dikty S., Burrows J.P., Garny H., Dameris M., Kubin A., Abalichin J., Langematz U. The Brewer–Dobson circulation and total ozone from seasonal to decadal time scales // Atmos. Chem. Phys. 2011. V. 11, N 21. P. 11221–11235. DOI: 10.5194/acp-11-11221-2011.
5. Buchholz J. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model: PhD Thesis. Johannes Gutenberg-Universität, Mainz, 2005. URL: https://hdl.handle.net/11858/00-001M-0000-0014-8B9C-F. 172 р.
6. Zhao Z., Wang W., Wang Y., Sheng L., Zhou Y., Teng S. Reasons for low fraction of Arctic stratospheric cloud in 2014/2015 winter // J. Geophys. Res.: Atmos. 2023. V. 128. P. e2023JD039549. DOI: 10.1029/2023JD039549.
7. Echer E., Guarnieri F.L., Rigozo N.R., Vieira L.E.A. A study of the latitudinal dependence of the quasi-biennial oscillation in Total Ozone Mapping Spectrometer total ozone // Tellus A. 2004. V. 56. P. 527–535. DOI: 10.3402/tellusa.v56i5.14469.
8. Zhao Z., Wang W., Wang Y., Sheng L., Zhou Y., Teng S. Reasons for low fraction of Arctic stratospheric cloud in 2014/2015 winter // J. Geophys. Res.: Atmos. 2023. V. 128. P. e2023JD039549. DOI: 10.1029/2023JD039549.
9. Doeringer D., Eldering A., Boone C.D., González Abad G., Bernath P.F. Observation of sulfate aerosols and SO2 from the Sarychev volcanic eruption using data from the Atmospheric Chemistry Experiment (ACE) // J. Geophys. Res. 2012. V. 117, N D3. P. D03203. DOI: 10.1029/2011JD016556.
10. Zhao J., Toon O.B., Turco R.P. Origin of condensation nuclei in the springtime polar stratosphere // J. Geophys. Res. 1995. V. 100. P. 5215–5227. DOI: 10.1029/94JD03110.
11. Mills M.J., Toon O.B., Solomon S. A 2D microphysical model of the polar stratospheric CN layer // Geophys. Res. Lett. 1999. V. 26. P. 1133–1136. DOI: 10.1029/1999GL900187.
12. Sheng J.-X., Weisenstein D.K., Luo B.-P., Rozanov E., Stenke A., Anet J., Bingemer H., Peter T. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation // J. Geophys. Res.: Atmos. 2015. V. 120. P. 256–276. DOI: 10.1002/2014JD021985.
13. Münch S., Curtius J. Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles // Atmos. Chem. Phys. 2017. V. 17. P. 7581–7591. DOI: 10.5194/acp-17-7581-2017.
14. Höpfner M., Glatthor N., Grabowski U., Kellmann S., Kiefer M., Linden A., Orphal J., Stiller G., von Clarmann T., Funke B., Boone C.D. Sulfur dioxide (SO2) as observed by MIPAS/Envisat: Temporal development and spatial distribution at 15–45 km altitude // Atmos. Chem. Phys. 2013. V. 13. P. 10405–10423. DOI: 10.5194/acp-13-10405-2013.
15. Pitts M.C., Poole L.R., Gonzalez R. Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017 // Atmos. Chem. Phys. 2018. V. 18. P. 10881–10913. DOI: 10.5194/acp-18-10881-2018.
16. Tritscher I., Pitts M.C., Poole L.R., Alexander S.P., Cairo F., Chipperfield M.P., Grooß J.-U., Höpfner M., Lambert A., Luo B., Molleker S., Orr A., Salawitch R., Snel M., Spang R., Woiwode W., Peter T. Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion // Rev. Geophys. 2021. V. 59. P. e2020RG000702. DOI: 10.1029/2020RG000702.
17. Lowe D., Mackenzie A. Polar stratospheric cloud microphysics and chemistry // J. Atmos. Sol.-Terr. Phys. 2008. V. 70, N 1. P. 13–40. DOI: 10.1016/j.jastp.2007.09.011.
18. Khosrawi F., Urban J., Pitts M.C., Voelger P., Achtert P., Kaphlanov M., Santee M.L., Manney G.L., Murtagh D., Fricke K.-H. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010 // Atmos. Chem. Phys. 2011. V. 11, N 16. P. 8471–8487. DOI: 10.5194/acp-11-8471-2011.
19. Kirner O., Müller R., Ruhnke R., Fischer H. Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring // Atmos. Chem. Phys. 2015. V. 15. P. 2019–2030. DOI: 10.5194/acp-15-2019-2015.
20. Ageeva V.Yu., Gruzdev A.N., Elohov A.S., Mohov I.I., Zueva N.E. Vnezapnye stratosfernye potepleniya: statisticheskie harakteristiki i vliyanie na obshchee soderzhanie NO2 i O3 // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 5. P. 477–486.
21. Bazhenov O.E., Nevzorov A.A., Nevzorov A.V., Dolgii S.I., Makeev A.P. Vozmushchenie stratosfery nad Tomskom zimoi 2017/2018 gg. po dannym lidarnyh i sputnikovyh (Aura MLS/OMI) nablyudenii // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 509–515. DOI: 10.15372/AOO20200702; Bazhenov O.E., Nevzorov A.A., Nevzorov A.V., Dolgii S.I., Makeev A.P. Disturbance of the stratosphere over Tomsk during winter 2017/2018 using lidar and Aura MLS/OMI observations // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 622–628.
22. Bazhenov O.E. Oksid hlora kak indikator razrusheniya ozona v zimne-vesennei stratosfere Arktiki po dannym sputnikovyh (Aura MLS) nablyudenii // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 904–909. DOI: 10.15372/AOO20231105; Bazhenov O.E. Chlorine oxide as an indicator of ozone destruction in the winter-spring Arctic stratosphere based on Aura MLS observations // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 48–54.
23. Kuttippurath J., Feng W., Müller R., Kumar P., Raj S., Gopikrishnan G.P., Roy R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 // Atmos. Chem. Phys. 2021. V. 21. P. 14019–14037. DOI: 10.5194/acp-21-14019-2021.