Vol. 38, issue 04, article # 4

Nguyen Minh. Bach., Fedotov Yu. V., Baryshnikov N. V., Belov M. L. Experimental studies of the influence of soil moisture and rainfall on the efficiency of the method for detecting oil pollution in the near-infrared range. // Optika Atmosfery i Okeana. 2025. V. 38. No. 04. P. 271–277. DOI: 10.15372/AOO20250404 [in Russian].
Copy the reference to clipboard
Abstract:

The article is devoted to experimental study of hyperspectral method of detection of oil pollution on the earth surface in the near-IR range. The results of experimental measurements of spectral brightness coefficient of soil samples contaminated with various types of petroleum products in the spectral range 1.6–2.5 mm are given. The influence of soil moisture and rainfall on the spectra of reflection of soils (various types of sand and soil from forest and park areas) contaminated with petroleum products (Moscow and Samara oil processing plants, kerosene, gas condensate, various gasoline brands, motor oils, and diesel fuel) was studied. It was shown that spectral notches of about 1.73 and 2.3 mm (typical for soils contaminated with oil products) in most cases remain in the spectra of reflection under conditions of moderately wet soil, moderate “rain”, and even heavy “rain”. The results of the work of the created neural network show the probability of detecting oil pollution on the earth surface to be more than 99% under conditions of moderately moist soil and moderate “rain” and more than 88% under conditions of heavy “rain” and wet soil for 14 spectral channels with a resolution of 10 nm in the range 1.6–2.4 μm.

Keywords:

optical remote sensing, Earth surface, detection of oil pollution, near-IR range

References:

1. Burlov V.G., Ostrikov V.N., Kirienko A.V., Plakhotnikov O.V. Imitatsionnaya model' identifikatsii ekologicheskikh zagryaznenii po dannym giperspektral'noi s"emki vidimogo diapazona // Optika atmosf. i okeana. 2023. V. 36, N 9. P. 718–724. DOI: 10.15372/AOO20230903.
2. Raputa V.F., Kokovkin V.V., Amikishieva R.A. Nazemnyi i sputnikovyi monitoring zagryazneniya snezhnogo pokrova v okrestnostyakh tsementnogo zavoda // Optika atmosf. i okeana. 2022. V. 35, N 6. PС. 495–499. DOI: 10.15372/AOO20220610.
3. Styopochkin I.E., Salyuk P.A., Kachur V.A. Obnaruzhenie razliva nefteproduktov v vide emul'sii i otdel'nykh plenok na poverkhnosti Beringova morya s pomoshch'yu giperspektral'noi opticheskoi radiometrii v avguste 2013 year // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 61–67. DOI: 10.15372/AOO20210108; Stepochkin I.E., Salyuk P.A., Kachur V.A. Detection of oil pollution in the form of emulsion and individual films on the water surface of the Bering Sea using hyperspectral visible radiometry in August 2013 // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 267–273.
4. Svarovskaya L.I., Yashchenko I.G., Altunina L.K. Adaptivnaya sistema monitoringa dlya otsenki masshtaba zagryazneniya territorii predpriyatii neftegazovogo kompleksa // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 177–183. DOI: 10.15372/AOO20170211.
5. Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2022 year / otv. red. G.M. Chernogaeva. M.: Rosgidromet, 2023. 215 p.
6. Huettel M. Oil pollution of beaches // Curr. Opin. Chem. Eng. 2022. V. 36, N 100803. P. 1–10. DOI: 10.1016/j.coche.2022.100803.
7. Komene G.L., Remi C.O. Oil pollution crisis and relationship marketing approach of oil firms in Niger delta // Br. J. Manag. Mark. Stud. 2022. V. 5, N 1. P. 39–78. DOI: 10.52589/BJMMS-2HWKHPGW.
8. Al-Battbootti M.J.H., Goga N., Marin I. Detection and analysis of oil spill using image processing // Int. J. Adv. Comput. Sci. Appl. 2022. V. 13, N 4. P. 381–387. DOI: 10.14569/IJACSA.2022.0130445.
9. Ismailov N.M., Nadzhafova S.I. Ocenka ekologicheskih riskov ekspluatacii magistral'nyh nefteprovodov na territorii Azerbajdzhana s tochki zreniya biogeoustojchivosti pochv k zagryazneniyu syroj neft'yu // Vestnik Moskovskogo universiteta. Iss. 17. Pochvovedenie. 2022. N 3. P. 93–100.
10. Popescu C., Gabor M.R. Quantitative analysis regarding the incidents to the pipelines of petroleum products for an efficient use of the specific transportation infrastructure // Processes. 2021. V. 9. 1535. P. 1–23. DOI: 10.3390/pr9091535.
11. Adegboye M.A., Fung W., Karnik A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches // Sensors. 2019. V. 19, N 2548. P. 1–36. DOI: 10.3390/s19112548.
12. Spandonidis C., Theodoropoulos P., Giannopoulos F. A combined semi-supervised deep learning method for oil leak detection in pipelines using IIoT at the edge // Sensors. 2022. V. 22, N 4105. P. 1–20. DOI: 10.3390/s22114105.
13. Zhang J., Hoffman A. Development of pipeline leak detection technologies // 10th International Pipeline Conference. V. 1. Design and Construction; Environment; Pipeline Automation and Measurement. Calgary, Alberta, Canada, 2014. P. 1–8.
14. Zhang J., Kane F. Leak detection and operations management in offshore pipelines. Engineering Environmental Science // 11th International Pipeline Conference. V. 3. Operations, Monitoring and Maintenance; Materials and Joining. Calgary, Alberta, Canada, 2016. P. 1–9.
15. Idachaba F., Rabiei M. Current technologies and the applications of data analytics for crude oil leak detection in surface pipelines // J. Pipeline Sci. Eng. 2021. V. 1. P. 436–451. DOI: 10.1016/j.jpse.2021.10.001.
16. Babichenko S., Dudelzak A., Poryvkina A. Laser remote sensing of coastal and terrestrial pollution by fls-lidar // EARSeL Proc. 2004. V. 3, N 1. P. 1–7.
17. Fedotov Yu.V., Matrosova O.A., Belov M.L., Gorodnichev V.A. Metod obnaruzheniya neftyanykh zagryaznenii na zemnoi poverkhnosti, osnovannyi na registratsii fluorestsentnogo izlucheniya v trekh uzkikh spektral'nykh diapazonakh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 208–212.
18. Fedotov Yu.V., Belov M.L., Gorodnichev V.A. Distantsionnyi lazernyi fluorestsentnyi metod obnaruzheniya utechek nefti na dline volny vozbuzhdeniya 266 nm // Opt. zhurn. 2022. V. 89, N 5. P. 54–61. DOI: 10.17586/1023-5086-2022-89-05-54-61.
19. Alaruri S.D. Multiwavelength laser induced fluorescence (LIF) LIDAR system for remote detection and identification of oil spills // Optik – Int. J. Light Electron Opt. 2019. V. 181. P. 239–245. DOI: 10.1016/j.ijleo.2018.12.073.
20. Pashayev A., Tagiyev B., Allahverdiyev K., Musayev A., Sadikhov I. Lidar for remote sensing of contaminations on water and earth surface taking place during oil-gas production // Proc. SPIE. 2015. V. 9810. P. 981018-1–981018-7. DOI: 10.1117/12.2225219.
21. Horig B., Kuhn F., Oschütz F., Lehmann F. HyMap hyperspectral remote sensing to detect hydrocarbons // Int. J. Remote Sens. 2001. V. 22, N 8. P. 1413–1422. DOI: 10.1080/01431160010013450.
22. Kühn F., Oppermann K., Hörig B. Hydrocarbon Index – an algorithm for hyperspectral detection of hydrocarbons // Int. J. Remote Sens. 2004. V. 25, N 12. P. 2467–2473. DOI: 10.1080/01431160310001642287.
23. Tian Q. Study on oil-gas reservoir detecting methods using hyperspectral remote sensing // International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXII ISPRS Congress. Melbourne, Australia, 2012. V. XXXIX-B7. P. 157–162. DOI: 10.5194/isprsarchives-XXXIX-B7-157-2012.
24. Pelta R., Ben-Dor E. An exploratory study on the effect of petroleum hydrocarbon on soils using hyperspectral longwave infrared imagery // Remote Sens. 2019. V. 11, N 569. P. 1–15. DOI: 10.3390/rs11050569.
25. Scafutto M., de Souza Filho C.R., de Oliveira W.J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring // ISPRS J. Photogramm. Remote Sens. 2017. V. 128. P. 146–157. DOI: 10.1016/j.isprsjprs.2017.03.009.
26. Keskin G., Teutsch C.D., Lenz A., Middelmann W. Concept of an advanced hyperspectral remote sensing system for pipeline monitoring // Proc. SPIE. 2015. V. 9644. P. 96440H-1–96440H-9. DOI: 10.1117/12.2194973.
27. Achard V., Foucher P.Y., Dubucq D. Hydrocarbon pollution detection and mapping based on the combination of various hyperspectral imaging processing tools // Remote Sens. 2021. V. 13, N 5. 1020. P. 1–28. DOI: 10.3390/rs13051020.
28. Andreoli G., Bulgarelli B., Hosgood B., Tarchi D. Hyperspectral analysis of oil and oil-impacted soils for remote sensing purposes. European Commission Joint Research Centre, 2007. 34 p. URL: https://www.ugpti.org/smartse/research/citations/downloads/Andreoli-HSI_for_Oil_and_Spills-2007.pdf (last access: 22.06.2024).
29. Allen C.S., Satterwhite M.B. Reflectance spectra of three liquid hydrocarbons on a common sand type // Proc. SPIE. 2006. V. 6233. P. 62331M-1–62331M-12. DOI: 10.1117/12.665586.
30. Allen C.S., Krekeler M.P.S. Reflectance spectra of crude oils and refined petroleum products on a variety of common substrates // Proc. SPIE. 2010. V. 7687. P. 76870L-1–76870L-13. DOI: 10.1117/12.852200.
31. Cooled-20°C NIR512-2.5 Spectrometer [Electronic resource]. URL: https://www.optosky.net/atp8000.html.Language English (last access: 22.06.2024).