The paper evaluates the experience of creating a regional monitoring system for the turbulent energy exchange of the atmosphere with the underlying surface. An original technology for building an observation network based on ultrasonic automatic weather stations of domestic production has been developed. Based on the developed technology, the TomskFluxNet system has been deployed in Tomsk – the first urban network of observations of the characteristics of turbulent energy exchange of the atmosphere with the surface in Northern Eurasia with a pronounced continental climate. The first experimental results were obtained, on the basis of which significant differences in turbulent heat and momentum flows over urban and natural underlying surfaces were revealed. The results can be used to verify and improve the parameterization of the urban surface, which are actively developing in land–air models and weather forecast.
atmospheric surface layer, turbulence, energy exchange, regional monitoring system, automatic ultrasonic weather station
1. Burba G.G., Kurbatova Yu.A., Kuricheva O.A., Avilov V.K., Mamkin V.V. Metod turbulentnyh pul'satsii: kratkoe prakticheskoe rukovodstvo. M.: In-t problem ekologii i evolyutsii im. A.N. Cevertsova RAN, 2016. 230 p.
2. Tarasova M.A., Varentsov M.I., Stepanenko V.M. Parametrizatsii vzaimodeistviya atmosfery s gorodskoi poverhnost'yu: obzor i perspektivy razvitiya // Izv. RAN. Fizika atmosfery i okeana. 2023. V. 59, N 2. P. 127–148. DOI: 10.31857/S0002351523020062.
3. Baldocchi D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology // Glob. Chang. Biol. 2020. V. 26, N 1. P. 242–260. DOI: 10.1111/gcb.14807.
4. Novick K.A., Biederman J.A., Desai A.R., Litvak M.E., Moore D.J.P., Scott R.L., Torn M.S. The AmeriFlux network: A coalition of the willing // Agric. Meteorol. 2018. V. 249. P. 444–456. DOI: 10.1016/j.agrformet. 2017.10.009.
5. Beringer J., Hutley L.B., McHugh I., Arndt S.K., Campbell D.I., Cleugh H.A., Cleverly J., Dios V.R., Eamus D., Evans B., Ewenz C.M., Grace P.R., Griebel A., Haverd V., Hinko-Najera N., Huete A.R., Isaac P., Kanniah K.D., Leuning R., Liddell M.J., Macfarlane C., Meyer W.S., Moore C.E., Pendall E., Phillips A., Phillips R.L., Prober S.M., Restrepo-Coupe N., Rutledge S., Schroder I., Silberstein R., Southall P.D., Yee M.S., Tapper N., Gorsel E.V., Vote C., Walker J.P., Wardlaw T.J. An introduction to the Australian and New Zealand flux tower network – OzFlux // Biogeosci. 2016. V. 13, N 21. P. 5895–5916. DOI: 10.5194/BG-13-5895-2016.
6. Yamamoto S., Saigusa N., Gamo M., Fujinuma Y., Inoue G., Hirano T. Findings through the AsiaFlux network and a view toward the future // J. Geogr. Sci. 2005. V. 15, N 2. P. 142–148. DOI: 10.1007/BF02872679.
7. Valentini R. EUROFLUX: An integrated network for studying the long-term responses of biospheric exchanges of carbon, water, and energy of European forests // Fluxes of Carbon, Water and Energy of European Forests. Springer, 2003. P. 1–8. DOI: 10.1007/978-3-662-05171-9_1.
8. Pastorello G., Trotta C., Canfora E., Chu H., Christianson D., Cheah Y.-W., Poindexter C., Chen J. Elbashandy A., Humphrey M., Isaac P., Polidori D., Ribeca A., Ingen C., Zhang L., Amiro B., Ammann C., Arain M.A., Jonas P. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data // Sci. Data. 2020. V. 7, N 1. P. 1–27. DOI: 10.1038/s41597-020-0534-3.
9. Best M.J., Abramowitz G., Johnson H.R., Pitman A.J., Balsamo G., Boone A., Cuntz M., Decharme B., Dirmeyer P.A., Dong J., Ek M., Guo Z., Haverd V., van den Hurk B.J.J.M., Nearing G.S., Pak B., Peters-Lidard C., Santanello J.A., Stevens L., Vuichard N. The plumbing of land surface models: Benchmarking model performance // J. Hydrometeorol. 2015. V. 16, N 3. P. 1425–1442. DOI: 10.1175/JHM-D-14-0158.1.
10. Ukkola A.M., Abramowitz G., De Kauwe M.G. A flux tower dataset tailored for land model evaluation // Earth Syst. Sci. Data. 2022. V. 14, N 2. P. 449–461. DOI: 10.5194/essd-14-449-2022.
11. Oke T.R., Mills G., Christen A., Voogt J.A. Urban Climates. Cambridge: Cambridge University Press, 2017. P. 509. DOI: 10.22201/ffyl.26832275e.2019.2.1091.
12. Oke T.R. The heat island of the urban boundary layer: Characteristics, causes and effects // Wind Clim. Cities. 1995. P. 81–107. DOI: 10.1007/978-94-017-3686-2_5.
13. Varentsov M., Konstantinov P., Repina I., Artamonov A., Pechkin A., Soromotin A., Esau I., Baklanov A.A. Observations of the urban boundary layer in a cold climate city // Urban Clim. 2023. V. 47. P. 101351. DOI: 10.1016/j.uclim.2022.101351.
14. Godowitch J.M., Ching J.K.S., Clarke J.F. Spatial variation of the evolution and structure of the urban boundary layer // Bound.-Lay. Meteorol. 1987. V. 38, N 3. P. 249–272.
15. Han J.Y., Baik J.J., Lee H. Urban impacts on precipitation // Asia Pac. J. Atmos. Sci. 2014. V. 50, N 1. P. 17–30. DOI: 10.1007/s13143-014-0016-7.
16. Liu J., Niyogi D. Meta-analysis of urbanization impact on rainfall modification // Sci. Rep. 2019. V. 9, N 1. P. 7301. DOI: 10.1038/s41598-019-42494-2.
17. Platonov V.S., Varentsov M.I., Yarinich Y.I. Shikhov Y.I., Chernokulsky A.N. A large mid-latitude city intensifies severe convective events: Evidence from long-term high-resolution simulations // Urban Clim. 2024. V. 54. P. 101837. DOI: 10.1016/j.uclim.2024.101837.
18. Garuma G.F. Review of urban surface parameterizations for numerical climate models // Urban Clim. 2017. V. 24, October. P. 830–851. DOI: 10.1016/j.uclim.2017.10.006.
19. Moriwaki R., Kanda M. Flux-gradient profiles for momentum and heat over an urban surface // Theor. Appl. Climatol. 2006 V. 84, N 1. P. 127–135. DOI: 10.1007/s00704-005-0150-3.
20. Rotach M.W., Rotach M.W., Vogt R., Bernhofer C., Batchvarova E., Christen A., Clappier A., Feddersen B., Gryning S., Martucci G., Mayer H., Mitev V., Oke T.R., Parlow E., Richner H., Roth M., Roulet Y.A., Ruffieux D., Salmond J.A., Schatzmann M., Voogt J.A. BUBBLE – an urban boundary layer meteorology project // Theor. Appl. Climatol. 2005. V. 81, N 3–4. P. 231–261. DOI: 10.1007/s00704-004-0117-9.
21. Hamdi R., Schayes G. Validation of the Martilli’s Urban Boundary Layer Scheme with measurements from two mid-latitude European cities // Atmos. Chem. Phys. Discuss. 2005. V. 5, N 7. P. 4257–4289. DOI: 10.5194/acp-7-4513-2007.
22. Schubert S., Grossman-Clarke S. Evaluation of the coupled COSMO-CLM/DCEP model with observations from BUBBLE // Q. J. Roy. Meteorol. Soc. 2014. V. 140, N 685. P. 2465–2483. DOI: 10.1002/qj.2311.
23. Grimmond C.S.B., Blackett M., Best M.J., Baik J.J., Belcher S.E., Beringer J., Bohnenstengel S.I., Calmet I., Chen F., Coutts A., Dandou A., Fortuniak K., Gouvea M.L., Hamdi R., Hendry M., Kanda M., Kawai T., Kawamoto Y., Kondo H., Zhang N. Initial results from Phase 2 of the international urban energy balance model comparison // Int. J. Climatol. 2011. V. 31, N 1. P. 244–272. DOI: 10.1002/joc.2227.
24. Lipson M.J., Grimmond S., Best M., Abramowitz G., Coutts A., Tapper N., Baik J.J., Beyers M., Blunn L., Boussetta S., Bou-Zeid E., De Kauwe MG., de Munck C., Demuzere M., Fatichi S., Fortuniak K., Han B.S., Hendry M.A., Kikegawa Y., Kondo H., Lee D.I., Lee S.H., Lemonsu A., Machado T., Manoli G., Martilli A., Masson V., McNorton J., Meili N., Meyer D., Nice K.A., Oleson K.W., Park S.B., Roth M., Schoetter R., Simón-Moral A., Steeneveld G.J., Sun T., Takane Y., Thatcher M., Tsiringakis A., Varentsov M., Wang C., Wang Z.H., Pitman A.J. Evaluation of 30 urban land surface models in the Urban-PLUMBER project: Phase 1 results // Q. J. Roy. Meteorol. Soc. 2024. V. 150, N 758. P. 126–169. DOI: 10.1002/qj.4589.
25. Lipson M., Grimmond S., Best M., Chow W.T.L., Christen A., Chrysoulakis N., Coutts A., Crawford B., Earl S., Evans J., Fortuniak K., Heusinkveld B.G., Hong J.W., Hong J., Järvi L., Jo S., Kim Y., Kotthaus S., Lee K., Masson J.V., McFadden P., Michels O., Pawlak W., Roth M., Sugawara H., Tapper N., Velasco E., Claire H. WardHarmonized gap-filled datasets from 20 urban flux tower sites // Earth Syst. Sci. Data. 2022. V. 14, N 11. P. 5157–5178. DOI: 10.5194/essd-14-5157-2022.
26. Konstantinov P., Varentsov M., Esau I. A high density urban temperature network deployed in several cities of Eurasian Arctic // Environ. Res. Lett. 2018. V. 13, N 7. P. 075007. DOI: 10.1088/1748-9326/aacb84.
27. Miles V., Esau I. Seasonal and spatial characteristics of Urban Heat Islands (UHIs) in Northern West Siberian cities // Remote Sens. (Basel). 2017. V. 9, N 10. P. 989. DOI: 10.3390/rs9100989.
28. Varentsov M., Wouters H., Platonov V., Konstantinov P. Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia // Atmosphere (Basel). 2018. V. 9, N 2. P. 50. DOI: 10.3390/ATMOS9020050.
29. Vickers D., Mahrt L. Quality Control and flux sampling problems for tower and aircraft data // J. Atmos. Ocean. Technol. 1997. V. 14. DOI: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.
30. Wilczak J.M., Oncley S.P., Stage S.A. Sonic anemometer tilt correction algorithms // Bound.-Lay. Meteorol. 2001. V. 99. P. 127–150. DOI: 10.1023/A:1018966204465.