Vol. 38, issue 05, article # 10

Odintsov S. L., Gladkikh V. A., Kamardin A. P., Nevzorova I. V. The efficiency of using the Monin–Obukhov scale for determining stratification type in the surface air layer. // Optika Atmosfery i Okeana. 2025. V. 38. No. 05. P. 400–405. DOI: 10.15372/AOO20250510 [in Russian].
Copy the reference to clipboard
Abstract:

Experimental data obtained in the surface air layer at two observation sites with the underlying surface different in structure are used to estimate the Monin–Obukhov (MO) scale for different types of temperature stratification. The MO scale (its sign, first of all) is compared with the current temperature profile in the  surface air layer. It is shown that the sign of the MO scale not always corresponds to the actual temperature stratification.

Keywords:

surface air layer, temperature stratification, Monin–Obukhov scale

References:

1. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V В. Prizemnaya turbulentnost' v Sayanskoj solnechnoj observatorii letom 2023 year // Optika atmosf. i okeana. 2024. V. 37, N 5. P. 370–376. DOI: 10.15372/AOO20240503; Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Ground-level atmospheric turbulence in the Sayan Solar Observatory in summer 2023 // Atmos. Ocean. Opt. 2024. V. 37, N 4. P. 485–491.
2. Marakasov D.A., Afanas'ev A.L., Gordeev E.V. Spektral'nyj sostav temperaturnoj turbulentnosti pri razlichnykh tipakh stratifikatsii prizemnogo sloya atmosfery // Optika atmosf. i okeana. 2024. V. 37, N 12. P. 1007–1014. DOI: 10.15372/AOO20241203.
3. Jiang Q., Wang Q., Wang S., Gaberšek S. Turbulence adjustment and scaling in an offshore convective internal boundary layer: A CASPER case study // J. Atmos. Sci. 2020. V. 77, N 5. P. 1661–1681. DOI: 10.1175/JAS-D-19-0189.1.
4. Liu L., Gadde S.N., Stevens R.J.A.M. The mean wind and potential temperature flux profiles in convective boundary layers // J. Atmos. Sci. 2023. V. 80, N 8. P. 1894–1903. DOI: 10.1175/JAS-D-22-0159.1.
5. Heisel M., Chamecki M. Evidence of mixed scaling for mean profile similarity in the stable atmospheric surface layer // J. Atmos. Sci. 2023. V. 80, N 8. P. 2057–2073. DOI: 10.1175/JAS-D-22-0260.1.
6. Zilitinkevich S., Kadantsev E., Repina I., Mortikov E., Glazunov A. Order out of chaos: Shifting paradigm of convective turbulence // J. Atmos. Sci. 2021. V. 78, N 12. P. 3925–3932. DOI: 10.1175/JAS-D-21-0013.1.
7. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 264 p.
8. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesej / pod red. F.T.M. N'istadta, Kh. van Dopa. L.: Gidrometeoizdat, 1985. 352 p.
9. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.
10. Gladkikh V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
11. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Vysota sloya peremeshivaniya v usloviyakh temperaturnykh inversij: eksperimental'nye dannye i model'nye otsenki // Optika atmosf. i okeana. 2022. V. 35, N 7. P. 549–558. DOI: 10.15372/AOO20220705; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Height of the mixing layer under conditions of temperature inversions: Experimental data and model estimates // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 721–731.