Carbon dioxide (CO2) is one of the main greenhouse gases; the study of its effect on the atmosphere on global and regional scales is of current importance. The development of technical means for remote gas analysis of the atmosphere is associated with the development of new and modernization of existing lidar sensing technologies. The paper presents the results of the development of a 2-mm pulsed differential absorption lidar system for sensing CO2 along horizontal paths in the atmosphere. The configuration and design of the lidar components are shown. Technical characteristics of the lidar system are provided. The results of lidar measurements of the time variation in CO2 concentration within the city of Tomsk in winter along a selected sensing path using a topographic target (forest belt) are presented. CO2 concentrations in the range of 435.2–445.1 ppm, corresponding to the background state of the atmosphere, were retrieved from recorded lidar signals. To confirm the correctness of the lidar data, the CO2 concentration was synchronously measured using a mobile gas analyzer. Analysis of the results shows that the error of lidar measurements of the CO2 concentration is 1.3%. The results of the work can be useful in the design, manufacture, and modernization of pulsed IR lidar systems for remote sensing of CO2 and other atmospheric gases.
lidar, carbon dioxide, atmosphere, differential absorption, remote sensing
1. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
2. Li J., Yu Z., Du Z., Ji Y., Liu C. Standoff chemical detection using laser absorption spectroscopy: A review // Remote Sens. 2020. V. 12, N 17. P. 2771. DOI: 10.3390/rs12172771.
3. Romanovskij O.A., Yakovlev S.V., Sadovnikov S.A., Nevzorov A.A., Nevzorov A.V., Harchenko O.V., Kravtsova N.S., Kistenev Yu.V. Nazemnye statsionarnye lidary differentsial'nogo pogloshcheniya dlya monitoringa parnikovykh gazov v atmosfere // Optika atmosf. i okeana. 2025. V. 38, N 1. P. 72–84. DOI: 10.15372/AOO20250109.
4. Wagner G.A., Plusquellic D.F. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 mm // Appl. Opt. 2016. V. 55, N 23. P. 6292–6310. DOI: 10.1364/AO.55.006292.
5. Wagner G.A., Plusquellic D.F. Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 1.6 mm // Opt. Express. 2018. V. 26, N 15. P. 19420–19434 (2018) DOI: 101364/OE.26.01.9420.
6. Shibata Y., Nagasawa C., Abo M. Development of 1.6 mm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles // Appl. Opt. 2017. V. 56. P. 1194–1201. DOI: 10.1364/AO.56.001194.
7. Mammez C.D., Dherbecourt J.-B., Gorju G., Pelon J., Melkonian J.-M., Godard A., Raybaut M. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source // Opt. Lett. 2017. V. 42. P. 4044–4047. DOI: 10.1364/OL.42.004044.
8. Zhu Y., Yang J., Chen X., Zhu X., Zhang J., Li S., Sun Y., Hou X., Bi D., Bu L., Zhang Y., Liu J., Chen W. Airborne validation experiment of 1.57 mm double-pulse IPDA LIDAR for atmospheric carbon dioxide measurement // Remote Sens. 2020. V. 12. 1999. DOI: 10.3390/rs12121999.
9. Wang Q., Mustafa F., Bu L., Yang J., Fan C., Liu J., Chen W. Monitoring of atmospheric carbon dioxide over a desert site using airborne and ground measurements // Remote Sens. 2022. V. 14. P. 5224. DOI: 10.3390/rs14205224.
10. Howes N., Innocenti F., Finlayson A., Dimopoulos C., Robinson R., Gardiner T. Remote measurements of industrial CO2 emissions using a ground-based differential absorption lidar in the 2 mm wavelength region // Remote Sens. 2023. V. 15. P. 5403. DOI: 10.3390/rs15225403.
11. Rosas W.P., Cézard N. Greenhouse gas monitoring using an IPDA lidar based on a dual-comb spectrometer // Opt. Express. 2024. V. 32, N 8. P. 13614–13627. DOI: 10.1364/OE.515543.
12. Refaat T.F., Singh U.N., Yu J., Petros M., Remus R., Ismail S. Double-pulse 2-mm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement // Appl. Opt. 2016. V. 55, N 15. P. 4232–4246. DOI: 10.1364/AO.55.004232.
13. Refaat T.F., Petros M., Antill C.W., Singh U.N., Choi Y., Plant J.V., Digangi J.P., Noe A. Airborne testing of 2-mm pulsed ipda lidar for active remote sensing of atmospheric carbon dioxide // Atmosphere. 2021. V. 12. P. 412. DOI: 10.3390/atmos12030412.
14. Refaat T.F., Singh U.N. Carbon dioxide active remote sensing using pulsed 2-mm lidar // Space-based Lidar Remote Sensing Techniques and Emerging Technologies. Springer Cham, 2024. P. 73–86. DOI: 10.1007/978-3-031-53618-2_7.
15. Stroud J.R., Dienstfrey W.J., Plusquellic D.F. Study on local power plant emissions using multi-frequency differential absorption LIDAR and real-time plume tracking // Remote Sens. 2023. V. 15. P. 4283. DOI: 10.3390/rs15174283.
16. Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Issledovaniya orientatsii kristallicheskikh chastits v ledyanykh oblakakh skaniruyushchim lidarom // Optika atmosf. i okeana. 2022. V. 35, N 4. P. 319–325. DOI: 10.15372/AOO20220412; Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Studies of the orientation of crystalline particles in ice clouds by a scanning lidar // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 509–516.
17. Nasonov S., Balin Y., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Study of atmospheric aerosol in the Baikal Mountain Basin with shipborne and ground-based lidars // Remote Sens. 2023. V. 15. P. 3816. DOI: 10.3390/rs15153816.
18. Bobrovnikov S.M., Zharkov V.I., Zaitcev N.G., Trifonov D.A. Primenenie kombinirovannogo metoda fotoregistratsii v lidarnykh izmereniyakh temperatury atmosfery na glavnom zerkale Sibirskoj lidarnoj stantsii // Optika atmosf. i okeana. 2023. V. 36, N 10. P. 839–845. DOI: 10.15372/AOO20231008; Bobrovnikov S.M., Zharkov V.I., Zaitcev N.G., Trifonov D.A. Combined lidar signal registration technique for atmospheric temperature measurements with the primary mirror of the Siberian lidar station // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 24–30.
19. Nevzorov A.A., Nevzorov A.V., Kharchenko O., Romanovskii Y.O. Lidar complex for control of the ozonosphere over Tomsk, Russia // Atmosphere. 2024. V. 15. P. 622. DOI: 10.3390/atmos15060622.
20. Razenkov I.A. Zondirovanie voln Kel'vina–Gel'mgol'tsa turbulentnym lidarom. II. Lidar UOR-5 // Optika atmosf. i okeana. 2024. V. 37, N 1. P. 61–72. DOI: 10.15372/AOO20240108; Razenkov I.A. Sounding of Kelvin–Helmholtz waves by a turbulent lidar: II–BSE-5 Lidar // Atmos. Ocean. Opt. 2024. V. 37, N 2. P. 220–231.
21. Razenkov I.A., Belan B.D., Mikhal’chishin A.V., Ivlev G.A. Primenenie turbulentnogo lidara dlya obespecheniya aviatsionnoj bezopasnosti // Optika atmosf. i okeana. 2024. V. 37, N 5. P. 393–402. DOI: 10.15372/AOO20240506; Razenkov I.A., Belan B.D., Mikhal’chishin A.V., Ivlev G.A. The use of the turbulent lidar for aviation safety // Atmos. Ocean. Opt. 2024. V. 37, N 4. P. 492–501.
22. Yakovlev S.V., Sadovnikov S.A., Kharchenko O.V., Kravtsova N.S. Remote sensing of atmospheric methane with IR OPO lidar system // Atmosphere. 2020. V. 11, N 1. P. 70. DOI: 10.3390/atmos11010070.
23. Sadovnikov S.A., Romanovskij O.A., Yakovlev S.V., Kharchenko O.V., Kravtsova N.S. Kalibrovka i polevye ispytaniya mobil'nogo IK-lidara differentsial'nogo pogloshcheniya dlya distantsionnogo zondirovaniya metana v atmosfere // Opt. jurn. 2022. V. 89, N 6. P. 15–24. DOI: 10.17586/1023-5086-2022-89-06-15-24.
24. Yakovlev S.V., Sadovnikov S.A., Romanovskii O.A., Gerasimova M.P., Kravtsova N.S. Transceiving telescope for a mobile TDLAS system for remote sounding of anthropogenic methane // Opt. Laser Eng. 2024. V. 183. P. 108535. DOI: 10.1016/j.optlaseng.2024.108535.
25. Sadovnikov S.A., Yakovlev S.V., Kravtsova N.S., Romanovskii O.A., Tuzhilkin D.A. Dual-channel infrared OPO lidar optical system for remote sensing of greenhouse gases in the atmosphere: Design and characteristics // Sens. Int. 2025. V. 6. P. 100307. DOI: 10.1016/j. sintl.2024.100307.
26. Mejeris R.M. Lazernoe zondirovanie atmosfery. M.: Mir, 1987. 550 p.
27. Solar laser system. URL: https://solar-laser.com/ru/ (last access: 07.03.2025).
28. Thorlabs. URL: https://www.thorlabs.com/ (last access: 07.03.2025).
29. Acute. URL: https://www.acute.com.tw/en (last access: 07.03.2025).
30. Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V., Arshinova V.G. Issledovanie prostranstvennogo raspredeleniya CO2 i CH4 v prizemnom sloe atmosfery Zapadnoj Sibiri s ispol'zovaniem mobil'noj platformy // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 544–552. DOI: 10.15372/AOO20200707; Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V., Arshinova V.G. Study of the spatial distributions of CO2 and CH4 in the surface air layer over Western Siberia using a mobile platform // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 661–670.
31. Laboratoriya klimatologii atmosfernogo sostava IOA SO RAN. Tomsk, 2025. URL: https://lop.iao.ru/RU/tor/gas/ (data obrashcheniya: 07.03.2025).