Vol. 38, issue 05, article # 2

Bykov A. D., Voronin B. A. Vibrational energy spectrum of SO2 isotopologues. // Optika Atmosfery i Okeana. 2025. V. 38. No. 05. P. 339–345 . DOI: 10.15372/AOO20250502 [in Russian].
Copy the reference to clipboard
Abstract:

The paper presents the results of calculating 10 the lowest vibrational energy levels of all 24 stable sulfur dioxide isotopologues. The calculations were performed using the ab initio potential energy function of the main isotopologue 32S16O2, the Rayleigh–Schrödinger perturbation theory of high orders and the Padé–Hermite series summation method. A numerical analysis of the series was performed, which showed that the perturbation series monotonically converge, but to obtain the energy levels of some vibrational states with an error of less than 1.0 cm-1, it is necessary to take into account the corrections of the 3rd–6th orders. The quadratic Padé–Hermite approximants give energy levels that coincide with high accuracy with the results of numerical diagonalization of the Hamiltonian matrix. A correction is proposed for calculating isotopic shifts, which gives a root-mean-square coincidence of 1.1 cm-1 with the experimental and calculated data by other authors. The calculation results can be used to solve various problems of atmospheric spectroscopy, astrophysics, geochemistry, and other fields of science related to the analysis of spectra of isotope-substituted molecules.

Keywords:

SO2, vibrational levels, isotopologue, perturbation theory

References:

1. Bykov A.D., Voronin B.A., Dudarenok A.S., Polovtseva E.R. Sdvig kolebatel'nyh polos pri izotopozameshchenii v molekulakh // Optika atmosf. i okeana. 2021. V. 34, N 4. P. 237–244. DOI: 10.15372/AOO20210401.
2. Goodson D.Z., Sergeev A.V. On the use of algebraic approximants to sum divergent series for Fermi resonances in vibrational spectroscopy // J. Chem. Phys. 1999. V. 110. P. 8205–8206. DOI: 10.1063/1.478722.
3. Marshall L.R., Schmidt A., Schurer A.P., Abraham N.L., Lücke L.J., Wilson R., Anchukaitis K.J., Hegerl G.C., Johnson B., Otto-Bliesner B.L., Brady E.C., Khodri M., Yoshida K. Last-millennium volcanic forcing and climate response using SO2 emissions // Clim. Past. 2025. V. 21. P. 161–184. DOI: 10.5194/cp-21-161-2025.
4. Sharybkina K.K., Naumenko O.V. Kolebatel'nye urovni energii izotopologov dioksida sery // Optika atmosf. i okeana. 2024. V. 37, N 7. P. 554–562. DOI: 10.15372/AOO20240703; Sharybkina K.K., Naumenko O.V. Vibrational energy levels for sulfur dioxide isotopologues // Atmos. Ocean. Opt. 2024. V. 37, N 5. P. 593–604.
5. Bykov A.D., Voronin B.A. Izotopicheskii sdvig kolebatel'no-vrashchatel'nykh linii SO2 // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 869–873. DOI: 10.15372/AOO20231101; Bykov A.D., Voronin B.A. Isotopic shifts of vibrational-rotational lines of SO2 // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 7–13.
6. Ĉižek J., Špirko V., Bludsky O. On the use of divergent series in vibrational spectroscopy. Two- and three-dimensional oscillators // J. Chem. Phys. 1993. V. 99. P. 7331–7336. DOI: 10.1063/1.465714.
7. Bykov A.D., Makushkin Yu.S., Ulenikov O.N. Izotopozameshchenie v mnogoatomnykh molekulakh. Novosibirsk: Nauka, 1985. 157 p.
8. Aliev M.R., Papousek D. Molecular Vibrational-Rotational Spectra. New York: Elsevier, 1982. 323 p.
9. Goodson D.Z. Resummation methods // WIREs Comput. Mol. Sci. 2012. V. 2. P. 743–761. DOI: 10.1002/wcms.92.
10. Duchko A.N., Bykov A.D. Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule // J. Chem. Phys. 2015. V. 143, N 15. P. 154102. DOI: 10.1063/1.4933239.
11. Krasnoshchekov S.V., Dobrolyubov E.O., Syuan'khao Chan. Fundamental'nyi analiz singulyarnykh i rezonansnykh yavlenii v kolebatel'nykh poliadakh molekuly diftorsililena // Opt. i spektroskop. 2020. V. 128, iss. 12. P. 1795–1805.
12. Krasnoshchekov S.V., Dobrolyubov E.O., Syzgantseva M.A., Palvelev R.V. Rigorous vibrational Fermi resonance criterion revealed: Two different approaches yield the same result // Mol. Phys. 2020. V. 118, N 11. DOI: 10.1080/00268976.2020.1743887.
13. Dobrolyubov E.O., Ikonomov N.R., Knizhnerman L.A., Suetin S.P. Rational Hermite–Padé approximants vs Padé approximants // arXiv: 2306.07063v2[math.cv]. 2023.
14. Krasnoshchekov S.V., Efremov I.M., Polyakov I.V., Millionshchikov D.V. Systematic ab initio calculation of spectroscopic constants for A-reduced rotational effective Hamiltonians of asymmetric top molecules using normal ordering of cylindrical angular momentum operators // J. Chem. Phys. 2024. V. 161. P. 234105. DOI: 10.1063/5.0239949.
15. Dobrolyubov E.O., Polyakov I.V., Millionshchikov D.V., Krasnoshchekov S.V. Vibrational resonance phenomena of the OCS isotopologues studied by resummation of high-order Rayleigh–Schrödinger perturbation theory // J. Quant. Spectrosc. Radiat. Transfer. 2024. V. 316. P. 108909. DOI: 10.1016/j.jqsrt.2024.108909.
16. Suetin S.P. Asimptoticheskie svoistva polinomov Ermita–Pade i tochki Katsa // Uspekhi matematicheskikh nauk. 2022. V. 77, iss. 6(468). DOI: 10.4213/rm10083.
17. Wang M., Audi G., Kondev F.G., Huang W.J., Naimi S., Xu X. The Ame2016 atomic mass evaluation (II). Tables, graphs and references // Chinese Phys. C. 2017. V. 41, N 3. P. 030003. DOI: 10.1088/1674-1137/41/3/030003.
18. Huang X., Schwenke D.W., Lee T.J. Empirical infra red line lists for the SO2 isotopologues: 32/33/34/36S16O2 and 32S18O2 // J. Mol. Spectrosc. 2015. V. 311. P. 19–24. DOI: 10.1016/j.jms.2015.01.010.
19. Polyansky O.L., Kyuberis A.A., Lodi L., Tennyson J., Yurchenko S.N., Ovsyannikov R.I., Zobov N.F. ExoMol molecular line lists XIX: High-accuracy computed hot line lists for H218O and H217O // Mon. Not. Roy. Astron. Soc. 2017. V. 466, N 2. P. 1363–1371. DOI: 10.1093/mnras/stw3125.
20. Voronin B.A., Tennyson J., Yurchenko S.N., Chesnokova T.Yu., Chentsov A.V., Bykov A.D., Makarova M.V., Voronina S.S., Cruz F.C. The infrared absorption spectrum of radioactive water isotopologue H215O // Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2024. V. 311. P. 124007. DOI: 10.1016/j.saa.2024.124007.