Vol. 38, issue 05, article # 8

Vasnev N. A., Trigub M. V. Estimation of ASE contribution at the output signal of laser active optical systems. // Optika Atmosfery i Okeana. 2025. V. 38. No. 05. P. 383–391. DOI: 10.15372/AOO20250508 [in Russian].
Copy the reference to clipboard
Abstract:

The paper is devoted to research of the output signal composition of metal-vapor laser active optical systems under various operating conditions. The effect of the temporal characteristics of laser active optical systems on the output signal composition is experimentally estimated. The method for determining the contribution of amplified spontaneous emission (ASE) to the output signal of self-adjoint scheme and scheme with independent illumination source is suggested. The optimal time when input signal enters to active medium of amplifier for providing maximal signal/noise ratio is determined. ASE is completely suppressed at a time delay of (-4.3; +25.8) ns in the scheme with independent illumination source. It is impossible to achieve complete suppression for the self-adjoint scheme. The minimal ASE value in the self-adjoint scheme was 80 mW, i.e., approximately 2% of the output signal power. The results can be useful in researching the amplification characteristics of active optical systems based on metal vapors, as well as in visual-optical diagnostics in laser monitor circuits on their basis.

Keywords:

laser active optical system, laser monitor, amplified spontaneous emission, single-pass radiation, signal amplification

Figures:
References:

1. Saraev Yu.N., Trigub M.V., Vasnev N.A., Semenchuk V.M., Nepomnyashiy A.S. The imaging of the welding processes with the use of CuBr laser // Proc. SPIE. 2019. V. 11322. P. 109.
2. Li L., Mostovshchikov A.V., Ilyin A.P., Antipov P.A., Shiyanov D.V., Gubarev F.A. In situ nanopowder combustion visualization using laser systems with brightness amplification // Proceedings of the Combustion Institute. 2021. V. 38, N 1. P. 1695–1702.
3. Li L., Mostovshchikov A.V., Ilyin A.P., Smirnov A., Gubarev F.A. Optical system with brightness amplification for monitoring the combustion of aluminum-based nanopowders // IEEE Trans. Instrum. Meas. 2020. V. 69, N 2. P. 457–468.
4. Gubarev F.A., Kim S., Li L., Mostovshchikov A.V., Il'in A.P. Opticheskaya sistema s usileniem yarkosti dlya issledovaniya poverkhnosti nanoporoshkov metallov vo vremya goreniya // Pribory i tekhnika eksperimenta. 2020. N 3. P. 96–103.
5. Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. Primenenie bistaticheskogo lazernogo monitora dlya vysokoskorostnoi vizualizatsii protsessov goreniya // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 962–968.
6. Li L., Ilyin A.P., Gubarev F.A., Mostovshchikov A.V., Klenovskii M.S. Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor // Ceramics International. 2018. V. 44, N 16. P. 19800–19808.
7. Osipov V.V., Platonov V.V., Trigub M.V., Tikhonov E.V., Vasnev N.A., Gembukh P.I., Zubarev N.M., Kochurin E.A. Experimental study of melt splashing during yttrium oxide evaporation using ytterbium fiber laser // Intern. J. Heat Mass Trans. 2024. V. 223. P. 125237.
8. Trigub M.V., Vasnev N.A., Gembukh P.I., Osipov V.V., Platonov V.V., Tikhonov E.V. Active optical system for high-speed imaging of oxides laser evaporation // Opt. Laser Technol. 2024. V. 174. P. 110635.
9. Kuznetsov A.P., Buzhinskii R.O., Gubskii K.L., Savelov A.S., Sarantsev S.A., Terekhin A.N. Vizualizatsiya plazmoindutsirovannykh protsessov proektsionnoi sistemoi s usilitelem yarkosti na osnove lazera na parakh medi // Fizika plazmy. 2010. V. 36, N 5. P. 463–472.
10. Prokoshev V.G. Mikro- nanostruktury i gidrodinamicheskie neustoichivosti, indutsirovannye lazernym izlucheniem na poverkhnosti tverdykh tel, i ikh diagnostika metodami lazernoi i zondovoi mikroskopii: dis. ... d-ra fiz.-mat. nauk. Novosibirsk, 2009. 310 p.
11. Prokoshev V.G., Klimovskii I.I., Galkin A.F. Vizualizatsiya protsessa lazernoi obrabotki materialov pri pomoshchi usilitelya yarkosti na osnove lazera na parakh medi // Izv. AN. Ser. Fiz. 1997. V. 61, N 8. P. 1560–1564.
12. Abrosimov G.V., Pol'skii M.M., Saenko V.B. Ispol'zovanie lazernoi sredy dlya fotografirovaniya poverkhnosti, zakrytoi sloem plazmy // Kvant. elektron. 1988. V. 15, N 4. P. 850–854.
13. Morozova E.A., Prokhorov A.M., Savranskii V.V., Shafeev G.A. Skorostnaya pokadrovaya registratsiya izobrazhenii biologicheskikh ob"ektov s ispol'zovaniem lazernogo proektsionnogo mikroskopa // Dokl. AN SSSR. 1981. V. 261, N 6. P. 1460–1462.
14. Zemskov K.I., Kazaryan M.A., Savranskii V.V., Shafeev G.A. Lazernyi proektsionnyi mikroskop v prokhodyashchem svete // Kvant. elektron. 1979. V. 6, N 11. P. 2473–2475.
15. Zemskov K.I., Isaev A.A., Kazaryan M.A., Petrash G.G. Lazernyi proektsionnyi mikroskop // Kvant. elektron. 1974. V. 1, N 1. P. 14–15.
16. Asinovskii E.I., Batenin V.M., Klimovskii I.I., Markovets V.V. Issledovaniya oblastei zamykaniya toka na elektrodakh slabotochnoi dugi atmosfernogo davleniya s pomoshch'yu lazernogo monitora // Teplofizika vysokikh temperatur. 2006. V. 36, N 6. P. 569–575.
17. Abramov D.V., Arkelyan S.M., Galkin A.F., Klimovskii I.I., Kucherik A.O., Prokoshev V.G. O vozmozhnosti issledovaniya vremennoi evolyutsii rel'efa poverkhnostei, podvergayushchikhsya vozdeistviyu moshchnykh potokov energii, neposredstvenno vo vremya vozdeistviya // Kvant. elektron. 2006. V. 36, N 6. P. 569–575.
18. Abramov D.V., Arakelyan S.M., Galkin A.F., Kvacheva L.D., Klimovskii I.I., Kononov M.A., Mikhalitsyn L.A., Kucherik A.O., Prokoshev V.G., Savranskii V.V. Plavlenie ugleroda, nagrevaemogo skontsentrirovannym lazernym izlucheniem v vozdukhe pri atmosfernom davlenii i temperature, ne prevyshayushchei 4000 K // Pis'ma v ZhETF. 2006. V. 84, N 5. P. 315–320.
19. Abramov D.V., Arakelyan S.M., Galkin A.F., Klimovskii I.I., Kucherik A.O., Prokoshev V.G. Lazernaya diagnostika evolyutsii poverkhnosti ugleroda pod vozdeistviem moshchnykh lazernykh impul'sov // Pribory i tekhnika eksperimenta. 2006. N 2. P. 137–143.
20. Zemskov K.I. Usiliteli yarkosti izobrazheniya v proektsionnykh opticheskikh sistemakh: dis. ... kand. fiz.-mat. nauk. M., 1983. 184 p.
21. Васнев Н.А., Тригуб М.В., Евтушенко Г.С. Особенности работы усилителя яркости на парах бромида меди в схеме бистатического лазерного монитора // Оптика атмосф. и океана. 2019. Т. 22, № 3. С. 247–253.
21. Vasnev N.A., Trigub M.V., Evtushenko G.S. Osobennosti raboty usilitelya yarkosti na parakh bromida medi v skheme bistaticheskogo lazernogo monitora // Optika atmosf. i okeana. 2019. V. 22, N 3. P. 247–253.
22. Isakov B.K., Kalugin M.M., Parfenov E.N. Issledovanie usileniya v aktivnykh sredakh na perekhodakh atomov medi i margantsa primenitel'no k sozdaniyu proektsionnykh sistem s usilitelyami yarkosti izobrazheniya // MTF. 1983. V. 33, N 4. P. 704–714.
23. Kazaryan M.A., Matveev V.M., Petrash G.G. Proektsionnaya sistema s usilitelem yarkosti i avtonomnym istochnikom osveshcheniya // Izv. AN SSSR. Ser. Fiz. 1982. V. 46, N 10. P. 1898–1904.
24. Gubarev F.A., Mostovshchikov A.V., Il'in A.P., Li L., Burkin E.Yu., Sviridov V.V. Lazernyi monitor s nezavisimoi podsvetkoi dlya nablyudeniya protsessov vysokotemperaturnogo goreniya nanoporoshkov metallov // Pis'ma v ZhTF. 2021. V. 47, N 8. P. 20.
25. Mohammadpour Lima S., Behrouzinia S., Khorasani K. Amplifying characteristics of small-bore copper bromide lasers // Appl. Phys. B. 2019. V. 125, N 6. P. 101.
26. Zemskov K.I., Kazaryan M.A., Pekhoshkina T.I., Trofimov A.N. Proektsionnaya sistema s usilitelem yarkosti na parakh khlorida medi // Kvant. elektron. 1979. V. 6, N 2. P. 391–394.
27. Petrash G.G., Zemskov K.I., Kazaryan M.A. Opticheskie sistemy s usilitelyami yarkosti // Tr. Fizicheskogo in-ta im. P.N. Lebedeva. M.: Nauka, 1991. V. 206. 152 p.
28. Bespalov V.I., Pasmannik G.A., Zemskov K.I., Kazaryan M.A. Opticheskie sistemy s usilitelyami yarkosti. Gor'kii: IPF AN SSSR, 1988. 173 p.
29. Trigub M.V., Vasnev N.A., Evtushenko G.S. Operating features of a copper bromide brightness amplifier in the monostatic laser monitor // Opt. Commun. 2021. V. 480. P. 126486.
30. Trigub M.V., Kulagin A.E. Semi-empirical model of a copper bromide vapor brightness amplifier // Opt. Commun. 2024. V. 573. P. 130994.
31. Dimaki V.A., Sukhanov V.B., Troitskii V.O., Filonov A.G. Stabilizirovannyi lazer na bromide medi s avtomatizirovannym upravleniem rezhimami raboty so srednei moshchnost'yu generatsii 20 Wt // Pribory i tekhnika eksperimenta. 2012. N 6. P. 95.
32. Lyabin N.A. Sozdanie sovremennykh promyshlennykh lazerov i lazernykh sistem na parakh medi dlya pretsizionnoi mikroobrabotki materialov: avtoreferat dis. ... d-ra tekhn. nauk. M.: Mosk. gos. tekhn. un-t im. N.E. Baumana, 2014. 40 p.
33. Webb C.E., Jones J.D.C. Handbook of Laser Technology and Applications (3 vol.): Laser Components, Properties, and Basic Principles. Bristol and Philadelphia: IoP Publishing, 2004. 2752 p.
34. Little C.E. Metal Vapor Lasers: Physics, Engineering & Application. Chichester (UK): John Willey & Sons, 1998. 620 p.
35. Gubarev F.A., Burkin E.Yu., Mostovshchikov A.V., Ilyin A.P., Li L. Two-channel system with brightness amplification for monitoring the combustion of aluminum-based nanopowders // IEEE Trans. Instrum. Meas. 2021. V. 70. P. 1–9.
36. Trigub M.V., Vasnev N.A., Evtushenko G.S., Dimaki V.A. Sistema sinkhronizatsii impul'sno-periodicheskogo rezhima raboty aktivnykh sred na samoogranichennykh perekhodakh v parakh metallov // Pribory i tekhnika eksperimenta. 2019. N 1. P. 30–35.
37. Lima S.M., Behrouzinia S., Salem M.K., Elahei M., Khorasani K., Dorranian D. Synchronization effect on the small-signal gain and saturation intensity of a CuBr laser // Opt. Quantum Electron. 2017. V. 49, N 11. P. 372.