The propagation and accumulation of impurities in the near-surface atmospheric layer largely depend on layer stability, which can be quantitatively characterized by the mixing layer height (MLH). For the first time, using a single methodology, the average values for 2001–2021 were estimated for different territories of Russia in the central months of seasons separately for daytime and nighttime. The analysis is based on MLH (or atmospheric mixing depht) values from the website [www.arl.noaa.gov] obtained during long-term studies of the long-range air mass transport to the various Russian regions. The MLH values averaged through the area over individual mainland quasi-homogeneous climatic territories or over Russian Arctic seas are given, as well as the spatial distribution of MLH over the Russian territory on a geographical grid of 1° × 1°. The results of the study can be used in environmental assessments of, for example, the atmospheric pollution potential, fluxes of aerosol impurities onto the underlying surface, sources of air pollution and the degree of their impact on the environment and humans, as well as in comparative analysis of climate of various Russian regions.
troposphere, atmospheric surface layer, mixing layer height, quasi-homogeneous climatic territory, Russian Arctic seas
1. Barrie L.A. Arctic air pollution: an overview of current knowledge // Atmos. Environ. 1986. V. 20, N 4. P. 643–663. DOI: 10.1016/0004-6981(86)90180-0.
2. Vinogradova A.A. Mikroelementy v sostave arkticheskogo aerozolya (obzor) // Izv. AN. Fiz. atmosf. i okeana. 1993. V. 29, N 4. P. 437–456.
3. Vinogradova A.A., Kotova E.I., Topchaya V.Yu. Atmosfernyj perenos antropogennyx tyazhelyx metallov v rajony severa Evropejskoj Rossii // Geografiya i prirodnye resursy. 2017. N 1. P. 108–116. DOI: 10.21782/GiPR0206-1619-2017-1(108-116).
4. Byzova N.L., Garger E.K., Ivanov V.N. Eksperimental'nye issledovaniya atmosfernoj diffuzii i raschety rasseyaniya primesi. L.: Gidrometeoizdat, 1991. 278 p.
5. Bezuglaya E.Yu., Borozdina N.N., Lavrova L.A. Vysota sloya peremeshivaniya // Trudy GGO. 1979. Iss. 417. P. 84–89.
6. Vinogradova A.A. Distantsionnaya otsenka vliyaniya zagryazneniya atmosfery na udalennye territorii // Geofizicheskie protsessy i biosfera. 2014. V. 13, N 4. P. 5–20.
7. Vinogradova A.A., Kotova E.I., Ivanova Yu.A. Tyazhelye metally i chernyj uglerod v atmosfere nad akvatoriej Barentseva morya: kontsentratsii i potoki na poverxnost' // Sistema Barentseva morya / pod red. akademika A.P. Lisitsyna. M.: GEOS, 2021. 672 p. P. 142–152. DOI: 10.29006/978-5-6045110-0-8.
8. Holzworth G.C. Estimates of mean maximum mixing depths in the contiguous United States // Mon. Weather Rev. 1964. V. 92. P. 235–243. DOI: 10.1175/1520-0493(1964)092%3C0235:EOMMMD%3E2.3.CO;2.
9. Belan B.D. Dinamika sloya peremeshivaniya po aerozol'nym dannym // Optika atmosf. i okeana. 1994. V. 7, N 8. P. 1045–1054.
10. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Vysota sloya peremeshivaniya v usloviyax temperaturnyx inversij: eksperimental'nye dannye i model'nye otsenki // Optika atmosf. i okeana. 2022. V. 35, N 7. P. 549–558. DOI: 10.15372/AOO20220705; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Height of the mixing layer under conditions of temperature inversions: Experimental data and model estimates // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 721–731.
11. Hosler C.R. Low-level inversion frequency in the contiguous United States // Mon. Weather Rev. 1961. V. 89, N 9. P. 319–339. DOI: 10.1175/1520-0493(1961)089%3C0319:LIFITC%3E2.0.CO;2.
12. Montégut C.D.B., Madec G., Fischer A.S., Lazar A., Iudicone D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology // J. Geophys. Res. 2004. V. 109. P. C12003. DOI: 10.1029/2004JC002378
13. Gu J., Zhang Y.H., Yang N., Wang R. Diurnal variability of the planetary boundary layer height estimated from radiosonde data // Earth Planet. Phys. 2020. V. 4, N 5. P. 479–492. DOI: 10.26464/epp2020042.
14. ECMWF Reanalysis v5 (ERA5). URL: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (last access: 11.01.2025).
15. NOAA Air Resources Laboratory. URL: https://www.arl.noaa.gov/ (last access: 11.01.2025).
16. Kuznetsova I.N., Kadygrov E.N., Miller E.A., Naxaev M.I. Kharakteristiki temperatury v nizhnem 600-metrovom sloe po dannym distantsionnyx izmerenij priborami MTP-5 // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 877–883.
17. Lokoshchenko M.A., Bogdanovich A.Yu., Elanskij N.F., Lezina E.A. Temperaturnye inversii v Moskve i ix vliyanie na sostav prizemnogo vozduxa // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 6. P. 641–650. DOI: 10.31857/S0002351521060080.
18. Doklad ob osobennostyax klimata na territorii Rossijskoj Federatsii za 2022 year. M., 2023. 104 p.
19. Vinogradova A.A., Karpov A.V. Programma dlya EVM: «Programma rascheta prostranstvennogo raspredeleniya chuvstvitel'nosti kontsentratsii atmosfernoj primesi k emissiyam etoj primesi». N reg. 2019662239. Data registratsii: 19.09.2019.
20. Kamardin A.P., Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Vzaimosvyaz' vertikal'nykh sdvigov vetra s intensivnost'yu temperaturnykh inversij i skorost'yu vetra v prizemnom sloe // Uspekhi sovremennogo estestvoznaniya. 2024. N 7. P. 98–104. DOI: 10.17513/use.38296.
21. Vinogradova A.A., Ivanova Yu.A. Atmosfernyj perenos chernogo ugleroda v Rossijskuyu Arktiku ot razlichnykh istochnikov (zima i leto 2000–2016 years) // Optika atmosf. i okeana. 2023. V. 36, N 6. P. 436–446. DOI: 10.15372/AOO20230601; Vinogradova A.A., Ivanova Yu.A. Atmospheric transport of black carbon to the Russian Arctic from different sources: Winter and summer 2000–2016 // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 758–766.
22. Mikhajlov A.Yu., Zolotokrylin A.N., Titkova T.B. Polozheniya arkticheskogo fronta v periody pokholodaniya i potepleniya Arktiki // Led i Sneg. 2016. V. 56, N 4. P. 493–501. DOI: 10.15356/2076-6734-2016-4-493-501.
23. Akhmetshina A.S. Inversii temperatury vozdukha kak faktor, vliyayushchij na uroven' zagryazneniya pogranichnogo sloya atmosfery (na primere g. Tomska): avtoref. dis. ... kand. geogr. nauk. Tomsk: Tom. gos. un-t, 2015. 26 p.
24. Nagurnyj A.P., Timerev A.A., Egorov S.A. Prostranstvenno-vremennoe povedenie inversionnogo sloya v nizhnej troposfere Arktiki // Dokl. AN. 1991. V. 319, N 5. P. 1110–1113.
25. Zhang Y., Seidel D.J., Golaz J.-C., Deser C., Tomas R.A. Climatological characteristics of Arctic and Antarctic surface-based inversions // J. Climatol. 2011. N 10. P. 5167–5186. DOI: 10.1175/2011JCLI4004.1.
26. Klimaticheskie kharakteristiki uslovij rasprostraneniya primesej v atmosfere: Sprav. posobie / pod red. E.Yu. Bezugloi, M.E. Berlyanda. L.: Gidrometeoizdat, 1983. 328 p.