Vol. 38, issue 06, article # 11

Protasov A. A., Baklanov A. M., Losev E. A., Dul'tseva G. G., Valiulin S. V. Condensation-based method for generating aerosol particles of cocrystals. // Optika Atmosfery i Okeana. 2025. V. 38. No. 06. P. 490–492. DOI: 10.15372/AOO20250611 [in Russian].
Copy the reference to clipboard
Abstract:

Cocrystals are commonly obtained using solid-phase or liquid-phase methods, though in the case if these methods are employed to develop cocrystalline pharmaceutical dosage forms, difficulties related to the control of mixture compositions and dosing accuracy arise. In the present work, we describe condensation-based method for generating aerosol particles of cocrystals formed by isoniazid, a known antituberculous remedy, and succininc acid. This method allows obtaining a pharmaceutical dosage form for delivery through inhalation with the high accuracy of dosage control. Inhalation delivery of isoniazid in the form of cocrystal can overcome the drug resistance of the mycobacteria by making high local concentration of the drug directly in the affected organ. The binary nucleation of the vapors of isoniazid and succinic acid in a horizontal flow thermal condensation reactor is investigated. The nucleation zone was determined using the method of supersaturated vapor shutoff. The composition of thus obtained cocrystals was determined by the full-profile X-ray diffraction. The conditions for generating cocrystals in a high yield have been selected, and nucleation rate was measured. The dose for inhalation delivery to laboratory animals under optimal conditions of binary nucleation is assessed. The results allow developing pharmaceutical dosage forms for delivery through inhalation with high accuracy of dosage control to treat pulmonary tuberculosis, including its drug-resistant forms.

Keywords:

aerosol, co-crystal, succinic acid, isoniazid, binary nucleation

References:

1. Guo M., Sun X., Chen J., Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications // Acta Pharm. Sinica B. 2021. V. 11, N 8. P. 2537–2564. DOI: 10.1016/j.apsb.2021.03.030.
2. Volchegorskii I.A., Novoselov P.N., Ushkareva E.V. Vliyanie remaksola na effektivnost' standartnogo lecheniya bol'nykh infil'trativnym tuberkulezom legkikh // Terapevticheskii arkhiv. 2016. N 3. P. 73–78.
3. Il'chenko L.Yu., Oskanova R.S., Fedorov I.G. Vozmozhnosti primeneniya preparata Remaksol pri gepatotoksicheskikh porazheniyakh // Terapiya. 2015. N 2. P. 72–78.
4. Mordyk A.V., Ivanova O.G., Nagibina L.A., Sitnikova S.V., Mar'ekhina O.A. Lekarstvennye porazheniya pecheni i ikh lechenie v klinike tuberkuleza // Tuberkulez i bolezni legkikh. 2015. N 8. P. 47–52.
5. Valiulin S.V., Karasev V.V., Komarovskikh A.Yu., Baklanov A.M. Eksperimental'nyi metod issledovaniya geterogennoi nukleatsii v laminarnoi protochnoi kamere // Optika atmosf. i okeana. 2012. V. 25, N 7. P. 638–643; Valiulin S.V., Karasev V.V., Komarovskikh A.Yu., Baklanov A.M. An experimental method for studying the heterogeneous nucleation in a laminar flow chamber // Atmos. Ocean. Opt. 2012. V. 25, N 6. P. 451–456.
6. Valiulin S.V., Baklanov A.M., Dubtsov S.N., Mitrochenko V.G., Moiseenko P.P., Onishchuk A.A. Diffuzionnyi spektrometr aerozolya dlya izmereniya raspredeleniya po razmeram i kontsentratsii nano- i submikronnykh chastits // Pribory i tekhnika eksperimenta. 2019. N 1. P. 145–146.
7. Valiulin S.V., Onischuk A.A., Baklanov A.M., Dubtsov S.N., Dultseva G.G., An'kov S.V., Tolstikova T.G., Rusinov V.L., Charushin V.N. An integrated aerosol setup for therapeutics and toxicological testing: Generation techniques and measurement instrumentation // Measurement. 2021. V. 181. DOI: 10.1016/j.measurement.2021.109659.
8. Blokhina S., Sharapova A., Ol’khovich M., Volkova T., Perlovich G. Vapor pressures and thermodynamic sublimation of antitubercular drugs // J. Therm. Anal. Calorim. 2015. V. 120. P. 1053–1060. DOI: 10.1007/s10973-015-4410-x.
9. Koponen I.K., Riipinen I., Hienola A., Kulmala M., Bilde M. Thermodynamic properties of malonic, succinic, and glutaric acids: Evaporation rates and saturation vapor pressures // Environ. Sci. Technol. 2007. V. 41, N 11. P. 3926–3933. DOI: 10.1021/es0611240.
10. Arms A.D., Travis C.C. Reference Physiological Parameters in Pharmacokinetic Modeling. EPA Report no. EPA/600/6-88/004. Washington DC: U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, 1988. 115 p.