Thermophoresis of aerosols traditionally has been studied both theoretically and experimentally for spherical or, more generally, compact isometric particles. This paper compares the theory of thermophoretic motion of fractal-like particles developed by the authors with experimental data for carbon aggregates obtained in the gas phase under the DLCA formation scenario. It is shown that the theoretical results for the thermophoretic velocity qualitatively and quantitatively agree well with experiment. Possible limitations of the proposed theory and fundamental issues related to the estimation of the determining structural and thermophysical parameters for fractal-like aggregates are discussed. The results can be useful for the physics of atmospheric aerosols in modeling the processes of carbonaceous particles motion with fractal properties.
thermophoresis, thermophoretic velocity, fractal-like aggregate, DLCA scenario, effective thermal conductivity
1. Beresnev S., Chernyak V. Thermophoresis of a spherical particle in a rarefied gas: Numerical analysis based on the model kinetic equations // Phys. Fluids. 1995. V. 7, N 7. P. 1743–1756. DOI: 10.1063/1.868489.
2. Takata S., Sone Y. Flow induced around a sphere with a non-uniform surface temperature in a rarefied gas, with application to the drag and thermal force problems of a spherical particle with an arbitrary thermal conductivity // Eur. J. Mech. B/Fluids. 1995. V. 14, N 4. P. 487–518.
3. Kalempa D., Sharipov F. Thermophoretic force on a sphere of arbitrary thermal conductivity in a rarefied gas // Vacuum. 2022. V. 201. Р. 111062. DOI: 10.1016/j.vacuum.2022.111062.
4. Joung J.B. Thermophoresis of a spherical particle: Reassessment, clarification, and new analysis // Aerosol Sci. Technol. 2011. V. 45, N 8. P. 927–948. DOI: 10.1080/02786826.2011.569777.
5. Sagot B. Thermophoresis for spherical particles // J. Aerosol Sci. 2013. V. 65. P. 10–20. DOI: DOI: 10.1016/j.jaerosci.2013.06.007.
6. Zheng F., Davis E.J. Thermophoretic force measurements of aggregates of micro-spheres // J. Aerosol Sci. 2001. V. 32. P. 1421–1435. DOI: 10.1016/s0021-8502(01)00064-7.
7. Zheng F. Thermophoresis of spherical and non-spherical particles: A review of theories and experiments // Adv. Coll. Inter. Sci. 2002. V. 97. P. 255–278. DOI: 10.1016/s0001-8686(01)00067-7.
8. Meakin P. A historical introduction to computer models for fractal aggregates // J. Sol.-Gel. Sci. Technol. 1999. V. 15. P. 97–117.
9. Beresnev S.A., Vasil’jeva M.S., Kochneva L.B. O dvizhenii fraktalopodobnykh agregatov: skorost' osedaniya chastits i termoforez // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 437–442. DOI: 10.15372/AOO20190603; Beresnev S.A., Vasil’jeva M.S., Kochneva L.B. Motion of fractal-like aggregates: Particle settling velocity and thermophoresis // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 528–533.
10. Messerer A., Niessner R., Pöschl U. Thermophoretic deposition of soot aerosol particles under experimental conditions relevant for modern diesel engine exhaust gas systems // J. Aerosol Sci. 2003. V. 34. P. 1009–1021. DOI: 10.1016/S0021-8502(03)00081-8.
11. Brugiére E., Gensdarmes F., Ouf F.-X., Yon J., Coppalle A., Boulaud D. Design and performance of a new device for the study of thermophoresis: The radial flow thermophoretic analyser // J. Aerosol Sci. 2013. V. 61. P. 1–12. DOI: 10.1016/j.jaerosci.2013.03.001.
12. Brugiére E., Gensdarmes F., Ouf F-.X., Yon J., Coppalle A. Increase in thermophoretic velocity of carbon aggregates as a function of particle size // J. Aerosol Sci. 2014. V. 76. P. 87–97. DOI: 10.1016/j.jaerosci.2014.06.007.
13. Yahia L.A.A., Gehin E., Sagot B. Experimental validation of the TRAP (TheRmophoretic Annular Precipitator) in laminar configuration // J. Aerosol Sci. 2017. V. 109. P. 38–54. DOI: 10.1016/j.jaerosci.2017.05.004.
14. Yahia L.A.A., Gehin E., Sagot B. Application of the TheRmophoretic Annular Precipitator (TRAP) for the study of soot aggregates morphological influence on their thermophoretic behavior // J. Aerosol Sci. 2017. V. 113. P. 40–51. DOI: 10.1016/j.jaerosci.2017.07.018.
15. Sorensen C.M., Roberts G.C. The prefactor of fractal aggregates // J. Coll. Inter. Sci. 1997. V. 186. P. 447–452. DOI: 10.1006/jcis.1996.4664.
16. Sipkens T.A., Boies A., Corbin J.C., Chakrabarty R.K., Olfert J., Rogak S.N. Overview of methods to characterize the mass, size, and morphology of soot // J. Aerosol Sci. 2023. V. 173. P. 106211. DOI: 10.1016/j.jaerosci.2023.106211.
17. Sorensen C.M. The mobility of fractal aggregates: A review // Aerosol Sci. Technol. 2011. V. 45. P. 765–779. DOI: 10.1080/02786826.2011.560909.
18. Evans W., Prasher R., Fish J., Meakin P., Phelan P., Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids // Int. J. Heat Mass Transfer. 2008. V. 51. P. 1431–1438. DOI: 10.1016/j.ijheatmasstransfer.
19. Beresnev S.A., Vasil’eva M.S., Gryazin V.I., Kochneva L.B. Fotoforez fraktalopodobnykh agregatov sazhi: mikrofizicheskaya model', sravnenie s eksperimentom i vozmozhnye atmosfernye proyavleniya // Optika atmosf. i okeana. 2017. V. 30, N 6. P. 457–462. DOI: 10.15372/AOO20170602; Beresnev S.A., Vasil’eva M.S., Gryazin V.I., Kochneva L.B. Photophoresis of fractal-like soot aggregates: Microphysical model, comparison with experiment, and possible atmospheric manifestations // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 527–532.
20. Hinds W.C. Aerosol technology: Properties, behavior, and measurement of airborne particles. N.-Y.: Wiley-Interscience, 1999. P. 174.
21. Kantorovich I.I., Bar-Ziv E. The effect of microstructural transformation on the evolution of thermal conductivity of highly porous chars during oxidation // Combust. Flame. 1997. V. 109. P. 521–535.
22. Kantorovich I.I., Bar-Ziv E. Heat transfer within highly porous chars: A review // Fuel. 1999. V. 78. P. 279–299. DOI: 10.1016/s0016-2361(97)00258-5.
23. Mackowski D.W. Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime // J. Aerosol Sci. 2006. V. 37. P. 242–259. DOI: 10.1016/j.jaerosci.2004.11.011.