Vol. 38, issue 06, article # 6

Kobzeva T. V., Dubtsov S. N., Dul'tseva G. G. Free radical stages in the chain mechanism of photonucleation of aromatic aldehydes. // Optika Atmosfery i Okeana. 2025. V. 38. No. 06. P. 458–463. DOI: 10.15372/AOO20250606 [in Russian].
Copy the reference to clipboard
Abstract:

The atmospheric transformations of vegetation-emitted organic compounds are initiated by their interaction with photolytically generated short-lived free radicals. The chain process, which is a sequence of radical stages, leads to the formation of condensable products as the nuclei of aerosol phase. The free radicals generated during the photolysis of benzaldehyde and biogenic aldehydes, including aromatic ones (salicylic, ortho- and para-anisic), were identified under laboratory conditions. Chromatographic analysis of the products formed after the introduction of additional free radicals shows that the composition and amount of condensable products change. The field measurements of the concentrations of aldehydes and the products of their photochemical decomposition under sunlight were carried out, and the compounds formed in the interaction of initial aldehydes with free radicals were detected. These products can be employed to estimate the concentrations of free radicals even below the limit of detection by physicochemical methods. The rates of free radical generation and sink were shown to change with altitude in the troposphere. The approach taking into account the vertical transport of air masses and the corresponding changes in photolysis rate constants has been developed. The formation of condensable products is the chain termination stage in the whole process of atmospheric photonucleation of biogenic aldehydes. The new data on the altitudinal variation in the concentrations of short-lived free radicals allow calculating photonucleation rates for biogenic aldehydes at different altitudes. The developed kinetic schemes can be used to simulate the formation of organic atmospheric aerosol in the troposphere taking into account the vertical transport of air masses.

Keywords:

atmospheric chemistry, biogenic aldehydes, short-lived free radicals, photonucleation mechanism, kinetic simulation

References:

1. Janzen E.G., Lopp I.G., Morgan T.V. Detection of fluoroalkyl and acyl radicals in the gas-phase photolysis of ketones and aldehydes by electron spin resonance gas-phase spin trapping techniques // J. Phys. Chem. 1973. V. 77, N 1. P. 139–141.
2. Watanabe T., Yoshida M., Fujiwara S., Abe K., Onoe A., Hirota M., Igarashi S. Spin trapping of hydroxyl radical in the troposphere for determination by electron spin resonance and gas chromatography/mass spectrometry // Anal. Chem. 1982. V. 54. P. 2470–2474.
3. Li W., Chen J., Ji Y., Zheng J., An T. Recent progress in chemical ionization mass spectrometry and its application in atmospheric environment // Atmos. Environ. 2024. V. 325. Art. 120426. DOI: 10.1016/j/atmosenv. 2024.120426.
4. Brune W.H., Stevens P.S., Mather J.H. Measuring OH and HO2 in the troposphere by laser-induced fluorescence at low pressure // J. Atmos. Sci. 2002. V. 52. P. 3328–3336.
5. Fuchs H., Holland F., Hofzumahaus A. Measurement of tropospheric RO2 and HO2 radicals by a laser-induced fluorescence instrument // Rev. Sci. Instrum. 2008. V. 79. Art. 084104. DOI: 10.1063/1.2968712.
6. Lew M.M., Rickly P.S., Bottorff B.P., Reidly E., Sklaveniti S., Leonardis Th., Locode N., Dusanter S., Kundu S., Wood E., Stevens P.S. OH and HO2 radical chemistry in a midlatitude fores: Measurements and model comparisons // Atmos. Chem. Phys. 2020. V. 20. P. 9209–9230. DOI: 10.5194/acp-20-9209-2020.
7. Williams P.J.H., Boustead G.A., Heard D.E., Seakins P.W., Rickard A.R., Chechik V. New approach to the detection of short-lived radical intermediates // J. Am. Chem. Soc. 2022. V. 144. P. 15969–15976. DOI: 10.1021/jacs2c03618.
8. Parker A.E., Monks P.S., Wyche K.P., Balzani-Loov J.M., Staehelin J., Reimann S., Legreid G., Vollmer M.K., Steinbacher M. Peroxy radicals in the summer free troposphere: Seasonality and potential for heterogeneous loss // Atmos. Chem. Phys. 2009. V. 9. P. 1989–2006. DOI: 10.5194/acp-9-1989-2009.
9. Maksimova T.A., Maskaeva A.A., Dul'tseva G.G., Dubtsov S.N. Biogennye organicheskie soedineniya kak vertikal'no raspredelennyi istochnik atmosfernogo aerozolya nad lesami Zapadnoi Sibiri // Optika atmosf. i okeana. 2014. V. 27, N 6. P. 515–519.
10. Blumthaler M., Ambach W., Rehwald W. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes // Theor. Appl. climatol. 1992. V. 46. P. 39–44.
11. Dvorkin A.Y., Steinberger E.N. Modeling the altitude effect on solar UV radiation // Solar Energy. 1999. V. 65, N 3. P. 181–187. DOI: 10.1016/S0038-092X(98)00126-1.
12. Dultseva G.G., Skubnevskaya G.I., Tikhonov A.Ya., Mazhukin D.G., Volodarsky L.B. Derivatives of dihydropyrazine-1,4-dioxide, 3-imidazolin 3-oxide, and a-phenyl nitrones with functional groups as new spin traps in solution and in the gas phase // J. Phys. Chem. 1996. V. 100. P. 17523–17527. DOI: 10.1002/chin.199708028.
13. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere. San Diego: Academic Press, 2000. 990 p.
14. Seinfeld J.H. Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley & Sons, 2005. 738 p.
15. Atkinson R. Atmospheric chemistry of VOCs and NOx // Atmos. Environ. 2000. V. 34. P. 2063–2101. DOI: 10.1016/S1352-2310(99).
16. NIST Chemical Kinetics Database. Standard Reference Database 17, Version 7.1 (Web Version), Release 1.6.8. Data Version 2025. URL: https://kinetics.nist.gov/kinetics (last access: 20.02.2025).
17. Keiko A.V. Programma NICK (Numerical Instrument for Chemical Kinetics), v. 2.2. Irkutsk: Institut sistem energetiki im. L.A. Melent'eva SO RAN, 1998.
18. Mao J., Ren X., Brune W.H. Insights into hydroxyl measurements and atmospheric oxidation in a California forest // Atmos. Chem. Phys. Discuss. 2012. V. 12. P. 6715–6744. DOI: 10.5194/acpd-12-6715-2012.
19. Zhou Ch., Wu B., Zheng X., Chen B., Chu Ch. Wavelength-dependent direct and indirect photochemical transformations of organic pollutants // Sci. Total Environ. 2024. V. 916. Art. 170414. DOI: 10.1016/j.scitotenv.2024.170414.
20. Dultseva G.G., Dubtsov S.N., Dultsev F.N., Kobzeva T.V., Nekrasov D.V. Analysis of the surface functional groups of organic nanoparticles formed in furfural vapour photonucleation using a rupture event scanning technique // Anal. Meth. 2017. V. 9. P. 5348–5355. DOI: 10.1039/c7ay01437f.
21. Rohrer F., Berresheim H. Strong correlation between levels of tropospheric hydroxyl radical and solar ultraviolet radiation // Nature. 2006. V. 13, N 442. P. 184–187. DOI: 10.1038/nature04924.