The helical symmetry of a permittivity tensor causes Bragg’s reflection at wavelengths close to the screw (helicoid) pitch for circular polarization of light. The study has discovered and explained the resistance of a band gap short-wave boundary to the optical axis tilt towards helical axis (normal to the plane of layers) in helical photonic structures. For a conical helical structure, the long-wavelength boundary of the reflection area changes more than for a structure with a normal cone opening with optical axis perpendicular to helical axis. Still, the wavelength for the edge mode at the short-wave boundary strictly remains under arbitrary distortions. The findings of a numerical simulation with the use of anisotropic transfer matrix and Berreman transfer matrix are coherent and confirmed by analytical derivation.
helical photonic structure, partial disordering, circular Bragg’s phenomenon
1. Francis F.Ch. Helicon discharges and sources: A review // Plasma Sour. Sci. Technol. 2015. V. 24. P. 1–25. DOI: 10.1088/0963-0252/24/1/014001.
2. Maksfild B. Gelikony v tverdykh telakh // Uspekhi fiz. nauk. 1971. V. 103, N 2. P. 233–273.
3. Sun J., Bhushan B. Structure and mechanical properties of beetle wings: A review // RSC Adv. 2012. V. 2. P. 12606–12623. DOI: 10.1039/C2RA21276E.
4. Lopez-Garcia M., Masters N., O’Brien H.E., Lennon J., Atkinson G., Cryan M.J., Oulton R., Whitney H.M. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae // Sci. Adv. 2018. V. 4. eaan8917. P. 1–8. DOI: 10.1126/sciadv.aan8917.
5. Afonasenko A.V., Iglakova A.N., Matvienko G.G., Oshlakov V.K., Prokop'ev V.E. Laboratornye i lidarnye izmereniya spektral'nykh kharakteristik list'ev berezy v razlichnye periody vegetatsii // Optika atmosf. i okeana. 2012. V. 25, N 3. P. 237–243.
6. Tarasov L.V. Fizika v prirode. M.: Prosveshchenie, 1988. 351 p.
7. Byalko A.V., Smorodinskii Ya.A. Nasha planeta – Zemlya. M.: Nauka, 1983. 208 p.
8. Huang K., Liu Y.-H., Lu Q., Hu Z., Lynch K.A., Hesse M., Vaivads A., Yang H. Auroral spiral structure formation through magnetic reconnection in the auroral acceleration region // Geophys. Res. Let. 2022. V. 49, N 18. P. e2022GL100466. DOI: 10.1029/2022GL100466.
9. Krasovskij V.I. Polar auroras // Space Sci. Rev. 1964. V. 3, N 2. P. 232–274. DOI: 10.1007/BF00180266.
10. Enengl F., Kotova D., Jin Y., Clausen L.B.N., Milochet W.J. Ionospheric plasma structuring in relation to auroral particle precipitation // J. Space Weather Space Clim. 2023. V. 13. P. 1. DOI: 10.1051/swsc/2022038.
11. Garab G. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: Personal perspectives // Photosynth. Res. 2016. V. 127. P. 131–150. DOI: 10.1007/s11120-015-0192-z.
12. Goss R., Garab G., Wilhelm C. Organization of the pigment molecules in the chlorophyll a/b/c-containing alga Mantoniella squamata (Prasinophyceae) studies by means of absorption, circular and linear dichroism spectroscopy // Biochim. Biophys. Acta. 2000. V. 1457, N 3. P. 190–199. DOI: 10.1016/S0005-2728(00)00101-8.
13. Szabó M., Lepetit B., Goss R., Wilhelm C., Mustárdy L., Garab G. Structurally flexible macro-organization of the pigment-protein complexes of the diatom Phaeodactylum tricornutum // Photo-synth Res. 2008. V. 95. P. 237–245. DOI: 10.1007/s11120-007-9252-3.
14. Shabanov V.F., Vetrov S.Ya., Shabanov A.V. Optika real'nykh fotonnykh kristallov. Jidkokristallicheskie defekty, neodnorodnosti. Novosibirsk: Izd-vo SO RAN, 2005. 209 p.
15. Sakoda K. Optical properties of photonic crystals. Berlin: Springer, 2005. 253 p. DOI: 10.1007/b138376.
16. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, Princeton, NJ, USA, 2008. 304 p. DOI: 10.1515/9781400828241.
17. Yablonovitch E., Gmitter T.J., Leung K.M. Photonic band structures: The base-centered cubic case employing non-spherical atoms // Phys. Rev. Lett. 1991. V. 67. P. 2295–2298. DOI: 10.1103/PhysRevLett.67.2295.
18. Yariv A., Yeh P. Optical Waves in Crystals. New York: Wiley, 1984. 304 p.
19. Shabanov A.V., Korshunov M.A., Bukhanov E.R. Issledovanie elektromagnitnogo polya v odnomernykh fotonnykh kristallakh s defektami // Komp'yuternaya optika. 2017. V. 41, N 5. P. 680–686. DOI: 10.18287/2412-6179-2017-41-5-680-686.
20. Belyakov V.A., Sonin A.S. Optika kholestericheskikh jidkikh kristallov. M.: Nauka, 1982. 360 p.
21. Belyakov V.A. Diffraction Optics of Complex-Structured Periodic Media: Localized Optical Modes of Spiral Media. Switzerland: Springer International Publishing, 2019. 253 p. DOI: 10.1007/978-3-319-43482-7_9.
22. Vepachedu V., Lakhtakia A. Chiral sculptured thin films for circular polarization of mid-wavelength infrared light // App. Opt. 2018. V. 57, N 22. P. 6410–6416. DOI: 10.1364/AO.57.006410.
23. Makhmudov K.O., Makhmudov O.I., Tarkhanov N. Equations of Maxwell type // JMAA. 2011. V. 378, N 1. P. 64–75. DOI: 10.1016/j.jmaa.2011.01.012.
24. Abelès F. La théorie générale des couches minces // Journal de Physique et le Radium. 1950. V. 11, N 7. P. 307–309.
25. Berreman D.W. Optics in stratified and anisotropic media: 4 ´ 4-matrix formulation // J. Opt. Soc. Am. 1972. V. 62, N 22. P. 502–510. DOI: 10.1364/JOSA.62.000502.
26. Yeh P. Electromagnetic propagation in birefringent layered media // J. Opt. Soc. Am. 1979. V. 69, N 5. P. 742–756. DOI: 10.1364/JOSA.69.000742.
27. Vetrov S.Ya., Timofeev I.V., Shabanov V.F. Lokalizovannye mody v khiral'nykh fotonnykh strukturakh // Uspekhi fiz. nauk. 2020. V. 190, N 1. P. 37–62. DOI: 10.3367/UFNr.2018.11.038490.
28. Lakhtakia A. Resilience of circular-polarization-state-sensitive reflection against morphological disorder in chiral structures // J. Nanophotonics. 2024. V. 18, N 22. P. 036005-1–036005-17. DOI: 10.1117/1.JNP.18.036005.v.
29. Arkhipkin V.G., Gunyakov V.A., Myslivets S.A., Zyryanov V.Y., Shabanov V.F., Lee W. Electro- and magneto-optical switching of defect modes in one-dimensional photonic crystals // JETP. 2011. V. 112, N 4. P. 577–587. DOI: 10.1134/S1063776111040017.
30. Fang X., MacDonald K.F., Plum E., Zheludev N.I. Coherent control of light-matter interactions in polarization standing waves // Sci. Rep. 2016. V. 6. P. 31141. DOI: 10.1038/srep31141.