Vol. 38, issue 07, article # 12

Shikhovtsev A. Yu. Characteristics of optical distortions in individual atmospheric turbulent layers above the Large Solar Vacuum Telescoperes. // Optika Atmosfery i Okeana. 2025. V. 38. No. 07. P. 592–598. DOI: 10.15372/AOO20250712 [in Russian].
Copy the reference to clipboard
Abstract:

The present work develops a technique for measuring the intensity of atmospheric optical turbulence in crossed optical beams. A new calibration function is suggested which allows estimating vertical profiles of the structure characteristic of the air refractive index turbulent fluctuations using covariance functions of differential jitters of solar subimage fragments detected by Shack–Hartmann sensor. Using observational data obtained at the Large Solar Vacuum Telescope (LSVT) of the Baikal Astrophysical Observatory (BAO), a characteristic vertical profile of the structure characteristic of the air refractive index turbulent fluctuations was measured. For comparison, the vertical profile of the structure characteristic of the air refractive index turbulent fluctuations was calculated based on the mean meteorological atmospheric characteristics. Both modeling and measurement data indicate the existence of turbulent layers at certain altitudes above the LSVT. The suggested approaches can be used in the optimization of adaptive optics systems, as well as in the development of optical turbulence profilers.

Keywords:

atmosphere, turbulence, outer turbulence scale

Figures:
References:

1. Panchuk V.E., Afanas'ev V.L. Astroklimat Severnogo Kavkaza – mify i real'nost' // Astrofizicheskii byulleten'. 2011. V. 66, N 2. P. 253–274.
2. Ehgamberdiev S.A., Baijumanov A.K., Ilyasov S.P., Sarazin M., Tillayev Y.A., Tokovinin A.A., Ziad A. The astroclimate of Maidanak Observatory in Uzbekistan // Astron. Astrophys. Suppl. Ser. 2000. V. 145. P. 293–304. DOI: 10.1051/aas:2000244.
3. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. P. 548.
4. Quatresooz F., Oestges C. Cn2 modeling for free-space optical communications: A review // IEEE. V. 13. P. 21279–21305. DOI: 10.1109/ACCESS.2025.3535093.
5. Kovadlo P.G., Ivanov V.I., Darchiya Sh.P. Fotoelektricheskii registrator drojaniya izobrajeniya Solntsa // Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. 1975. N 37. P. 196.
6. Lukin V.P., Grigor'ev V.M., Antoshkin L.V., Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lavrinov V.V., Kovadlo P.G., Skomorovskii V.I. Rezul'taty ispytaniya adaptivnoi opticheskoi sistemy s modifitsirovannym korrelyatsionnym datchikom na Bol'shom Solnechnom Vakuumnom Teleskope // Optika atmosf. i okeana. 2007. V. 20, N 5. P. 419–427.
7. Lukin V.P., Lukin I.P. Obzor sovremennykh tekhnologii izmereniya, prognozirovaniya i korrektsii turbulentnykh iskajenii v opticheskikh volnakh // Komp'yuternaya optika. 2024. V. 48, N 1. P. 68–80. DOI: 10.18287/2412-6179-CO-1355.
8. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Fazovyi opticheskii metod izmereniya vysotnogo profilya atmosfernoi turbulentnosti // Izv. vuzov. Fizika. 2016. V. 59, N 12. P. 138–142.
9. Ikhlef R., Corbard T., Morand F., Renaud C., Fodil M., Ziad A., Borgnino J.,Meftah M., Assus P., Chauvineau B., Hauchecorne A., Lesueur P., Poiet G., Ubaldi F., Hamadouche M., Abdelatif T. MISOLFA: A generalized monitor for daytime spatio-temporal turbulence characterization // Mon. Not. R. Astron. Soc. 2016. V. 458. P. 517–530. DOI: 10.1093/mnras/stw242.
10. Butterley T., Wilson R., Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data // Mon. Not. R. Astron. Soc. 2006. V. 369, N 2. P. 835–845. DOI: 10.1111/j.1365-2966.2006.10337.x.
11. Goodwin M., Jenkins C., Lambert A. Improved detection of atmospheric turbulence with SLODAR // Opt. Express. 2007. V. 15, N 22. P. 14844–14860. DOI: 10.1364/OE.15.014844.
12. Wilson R.W. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor // Mon. Not. R. Astron. Soc. 2002. V. 337, N 1. P. 103–108. DOI: 10.1046/j.1365-8711.2002.05847.x.
13. Song T., Cai Z., Liu Y., Zhao M., Fang Y., Zhang X., Wang J., Li X., Song Q., Du Z. Daytime optical turbulence profiling with a profiler of the differential solar limb // Mon. Not. R. Astron. Soc. 2020. V. 499, N 2. P. 1909–1917. DOI: 10.1093/mnras/staa2729.
14. Wang Z., Zhang L., Kong L., Bao H., Guo Y., Rao X., Zhong L., Zhu L., Rao C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles // Mon. Not. R. Astron. Soc. 2018. V. 478, N 2. P. 1459–1467. DOI: 10.1093/MNRAS/STY1097.
15. Potanin S.A., Kopylov E.A., Savvin A.D. Mobile differential image motion monitor for astroclimatic research // Astrophys. Bull. 2024. V. 79, N 2. P. 350–359. DOI: 10.1134/S1990341323600424.
16. Potanin S.A., Kornilov M.V., Savvin A.D., Safonov B.S., Ibragimov M.A., Kopylov E.A., Nalivkin M.A., Shmagin V.E., Huy L.X., Thao N.T. A facility for the study of atmospheric parameters based on the Shack–Hartmann sensor // Astrophys. Bull. 2022. V. 77, N 2. P. 214–221. DOI: 10.1134/S1990341322020067.
17. Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Development of elements for an adaptive optics system for solar telescope // J. Appl. Remote Sens. 20178. V. 12, N 4. P. 042403. DOI: 10.1117/1.JRS.12.042403.
18. Shikhovtsev A.Y., Kovadlo P.G., Kiselev A.V., Kolobov D.Y., Lukin V.P., Russkikh .V., Shikhovtsev M.Y. Modified method to detect the turbulent layers in the atmospheric boundary layer for the Large Solar Vacuum Telescope // Atmosphere. 2021. V. 12. P. 159. DOI: 10.3390/atmos12020159.
19. Shikhovtsev A.Y., Kovadlo P.G., Lezhenin A.A., Gradov V.S., Zaiko P.O., Khitrykau M.A., Kirichenko K.E., Driga M.B., Kiselev A.V., Russkikh I.V., Obolkin V.A., Shikhovtsev M.Yu. Simulating atmospheric characteristics and daytime astronomical seeing using weather research and forecasting model // Appl. Sci. 2023. V. 13. P. 6354. DOI: 10.3390/app13106354.
20. Shikhovtsev A.Y. Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site // PASJ. 2024. V. 76.I.3. DOI: 10.1093/pasj/psae031.
21. Schmidt D., Gorceix N., Goode P.R., Marino J., Rimmele T., Wöger F., Zhang X., Rigaut F., von der Lühe O. Clear widens the field for observations of the Sun with multi-conjugate adaptive optics // Astron. Astrophys. 2017. V. 597. L8. DOI: 10.1051/0004-6361/201629970.
22. Zhong L., Zhang L., Shi Z., Tian Y., Guo Y., Kong L., Rao X., Bao H., Zhu L., Rao C. Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging // Astron. Astrophys. 2020. V. 637. N A99. DOI: 10.1051/0004-6361/201935109.
23. Schmidt D., Gorceix N., Goode P. On the sequence of deformable mirrors in MCAO: Findings from an on-sky, closed-loop experiment // Proc. SPIE. 2020. N 1144842. DOI: 10.1117/12.2563376.
24. Zhang L., Yan N., Bao H., Rao X., Guo Y., Ran X., Yang J., Wang C., Fan X., Tong D., Zhong L., Li M. The wide field adaptive optics systems on 1 m new vacuum solar telescope // Proc. SPIE. 2024. V. 13097, N 130970F. DOI: 10.1117/12.3019913.
25. Schmidt D., Berkefeld T., Heidecke F., von der Lühe O., Soltau D. Testbed for the multu-conjugate adaptive optics system of the solar telescope GREGOR // Proc. SPIE. 2009. V. 7439. DOI: 10.1117/12.829886.
26. Mal'tsev G.N., Koshkarov A.S. Opredelenie vysot sopryajeniya korrektorov volnovogo fronta mnogosopryajennykh adaptivnykh opticheskikh sistem na osnove modelei atmosfernoi turbulentnosti // Opt. jurn. 2025. V. 92, N 2. P. 41–55. DOI: 10.17586/1023-5086-2025-92-02-41-55.
27. Townson M.J., Farley O.J.D., de Xivry G.O., Osborn J., Reeves A.P. AOtools: A Python package for adaptive optics modelling and analysis // Opt. Express. 2019. V. 27, N 22. P. 31316–31329. DOI: 10.1364/OE.27.031316.
28. Kopylov E.A., Lukin V.P., Kovadlo P.G., Shikhovtsev A.Y. The study of variability of the atmospheric turbulence in the region Lake Baykal // Proc. SPIE. 2016. V. 9909. N 99093S. DOI: 10.1117/12.2231940.
29. Lukin V.P. Outer scale of turbulence and its influence on fluctuations of optical waves // Phys. Usp. 2021. V. 64. N 280. DOI: 10.3367/UFNe.2020.10.038849.
30. Basu S., DeMarco A.W., He P. On the outer length scales of optical turbulence // Imag. Appl. Opt. Congress, OSA Technical Digest. N JW1G.3. 2020. DOI: 10.1364/AOMS.2020.JW1G.3.
31. Borgnino J. Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy // Appl. Opt. 1990. V. 29, N 13. P. 1863–1865 DOI: 10.1364/AO.29.001863.
32. Lukin V.P. Outer scale of atmospheric turbulence // Proc. SPIE. 2005. V. 5981. N 598101. DOI: 10.1117/12.649809.
33. Shikhovtsev A.Yu., Kovadlo P.G. Vertikal'nye profili opticheskoi turbulentnosti i otsenka vneshnego masshtaba turbulentnosti nad Baikal'skoi astrofizicheskoi observatoriei // Optika atmosf. i okeana. 2024. V. 37, N 9. P. 808–814. DOI: 10.15372/AOO20240912; Shikhovtsev A.Yu., Kovadlo P.G. Vertical profiles of optical turbulence and estimates of turbulence outer scale above the Baykal astrophysical observatory // Atmos. Ocean. Opt. V. 37, N 6. P. 925–931.