Vol. 38, issue 07, article # 2

Sinitsa L. N., Vasil’chenko S. S., Nevzorova T.A., Dudaryonok A. S., Lavrentieva N. N. Measurements and calculations of broadening and shift coefficients of water vapor lines perturbed by air and nitrous oxide in the 2ν1 + ν2 + ν3 band. // Optika Atmosfery i Okeana. 2025. V. 38. No. 07. P. 514–521. DOI: 10.15372/AOO20250702 [in Russian].
Copy the reference to clipboard
Abstract:

The study of the absorption of water vapor, the most powerful greenhouse gas, is important for the development of climate models of our planet. The broadening of spectral lines become of special importance for variations in temperature and pressure in the atmosphere. The paper presents the measured broadening and shift coefficients of H2O lines by N2O and air pressure at room temperature for 11 vibrational-rotational transitions in the 2ν1 + ν2 + ν3 band, the rotational quantum number J varies from 0 to 6. The measurements were carried out on a CRDS spectrometer of high sensitivity (6.5 × 10-11 cm-1), the apparatus function of which is orders of magnitude narrower than the width of the lines under study. Line broadening and shift coefficients were also calculated using the semi-classical approach modification, where a correction factor is included in the calculation scheme. The obtained parameters were compared with published data. The results can be used for refining spectroscopic information in HITRAN database.

Keywords:

line profile parameters, line broadening, halfwidth, line shift, water vapor, nitrous oxide

Figures:
References:

1. Gamache R.R., Hartmann J.M. An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor // Can. J. Chem. 2004. V. 82. P. 1013–1027. DOI: 10.1139/v04-069.
2. Ibrahim N., Chelin P., Orphal J., Baranov Y.I. Line parameters of H2O around 0.8 μm studied by tunable diode laser spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 15. P. 2523–2536. DOI: 10.1016/j.jqsrt.2008.04.008.
3. Ngo N.H., Ibrahim N., Landsheere X., Tran H., Chelin P., Schwell M., Hartmann J.M. Intensities and shapes of H2O lines in the near-infrared by tunable diode laser spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 11. P. 870–877. DOI: 10.1016/j.jqsrt.2011.12.007.
4. Ibrahim N., Chelin P., Orphal J., Baranov Y.I. Corrigendum to “Line parameters of H2O around 0.8 μm studied by tuneable diode laser spectroscopy” // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 818–819. DOI: 10.5000/IAO.2012.2.12433.
5. Ray A., Bandyopadhyay A., Ray B., Biswas D., Ghosh P.N. Line-shape study of water vapour by tunable diode laser spectrometer in the 822–832 nm wavelength region // Appl. Phys. B. 2004. V. 79. P. 915–921. DOI: 10.1007/s00340-004-1643-y.
6. Schermaul R., Learner R.C.M., Newnham D.A., Williams R.G., Ballard J., Zobov N.F., Belmiloud D., Tennyson J. The water vapor spectrum in the region 8600–15000 cm-1: Experimental and theoretical studies to a new spectral line database // J. Mol. Spectrosc. 2001. V. 208. P. 32–42. DOI: 10.1006/jmsp.2001.8374.
7. Lucchesini A., Gozzini S., Gabbanini C. Water vapor overtones pressure line broadening and shifting measurements // Eur. Phys. J. D. 2000. V. 8. P. 223–226. DOI: 10.1007/s10053-000-8807-z.
8. Ponsardin P.L., Browell E.V. Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region // J. Mol. Spec. 1997. V. 185. P. 58–70. DOI: 10.1006/jmsp.1997.7354.
9. Adler-Golden S., Lee J., Goldstein N. Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 48, N 5–6. P. 527–535. DOI: 10.1016/0022-4073(92)90118-N.
10. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canèw E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Auwera J.V., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer 2022. V. 277, N 1. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
11. Vispoel B., Cavalcanti J.H., Paige E.T., Gamache R.R. Vibrational dependence, temperature dependence, and prediction of line shape parameters for the H2O–N2 collision system // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107030. DOI: 10.1016/j.jqsrt.2020.107030.
12. Jacquemart R.R. Gamache R.R., Rothman L.S. Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 96. P. 205–239. DOI: 10.1016/j.jqsrt.2004.11.018.
13. Vasilchenko S.S., Kassi S., Lugovskoi A.A. Vysokochuvstvitel'nyi rezonatornyi kol'tsevoi spektrometr dlya vysokorazreshayushchei spektroskopii atmosfernyx gazov v oblasti 745–775 nm // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 274–277. DOI: 10.1134/S1024856021030179; Vasilchenko S.S., Kassi S., Lugovskoi A.A. High-sensitivity cavity ring-down spectrometer for high-resolution spectroscopy of atmospheric gases in the 745–775 nm region // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 274–277.
14. Kruglova T.V., Sрсрerbakov A.P. Avtomatizirovannyi poisk linii v molekulyarnyh spektrah na osnove neparametricheskih statisticheskih metodov: regulyarizatsiya v otsenke parametrov spektral'nyh linii // Opt. i spektroskop. 2011. V. 111. P. 353–356. DOI: 10.1134/s0030400x1109013x.
15. Ngo N.H., Lisak D., Tran H., Hartmann J.M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100. DOI: 10.1016/j.jqsrt.2013.05.034.
16. Lisak D., Hodges J.T., Ciurylo R. Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy // Phys. Rev. A. 2006. V. 73. Р. 012507. DOI: 10.1103/PhysRevA.73.012507.
17. Tennyson J., Bernath P.F., Campargue A., Csaszar A.G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone C.D., De Vizia M.D., Gianfrani L., Hartmann J.M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.L. A database of water transitions from experiment and theory (IUPAC technical report) // Pure Appl. Chem. 2014. V. 86, N 1. P. 77–83. DOI: 10.1515/pac-2014-5012.
18. Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94. P. 5883–5890. DOI: 10.1063/1.460472.
19. Flygare W.H., Benson R.C. The molecular Zeeman effect in diamagnetic molecules and the determination of molecular magnetic moments (g values), magnetic susceptibilities, and molecular quadrupole moments // Mol. Phys. 1971. V. 20. P. 225–250. DOI: 10.1080/00268977100100221.
20. Halkier A., Coriani S., Jørgensen P. The molecular electric quadrupole moment of N2 // Chem. Phys. Lett. 1998. V. 294. P. 292–296. DOI: 10.1016/S0009- 2614(98)00878-1.
21. Buckingham A.D., Disch R.L., Dunmur D.A. Quadrupole moments of some simple molecules // J. Am. Chem. Soc. 1968. V. 90. P. 3104–3107. DOI: 10.1021/ja01014a023.
22. Mogi K., Komine T., Hirao K. A theoretical study on the dipole moment of N2O and the weakly bound complexes formed by N2O // J. Chem. Phys. 1991. V. 95. P. 8999. DOI: 10.1063/1.461231.
23. Chetty N., Couling V.W. Measurement of the electric quadrupole moment of N2O // J. Chem. Phys. 2011. V. 134. P. 144307. DOI: 10.1063/1.3578609.
24. Bykov A.D., Lavrentieva N.N., Sinitsa L.N. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, N 14–15. P. 1653–1658. DOI: 10.1080/00268970410001725765.
25. Anderson P.W. Pressure broadening in the microwave and infrared regions // Phys. Rev. 1949. V. 76. P. 647–661. DOI: 10.1103/PhysRev.76.647.
26. Tsao C.J., Curnutte B. Line-width of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1961. V. 2. P. 41–91. DOI: 10.1016/0022-4073(62)90013-4.
27. Barber R.J., Tennyson J., Harris G.H., Tolchenov R.N. A high-accuracy computed water line list // Mon. Not. R. Astron. Soc. 2006. V. 368. P. 1087–1094. DOI: 10.1111/j.1365-2966.2006.10184.x.
28. Luo Y., Agren H., Vahtras O., Jorgensen P., Spirko V., Hettema H. Frequency-dependent polarizabilities and first hyperpolarizabilities of H2O // J. Chem. Phys. 1993. V. 98. P. 7159–7164. DOI: 10.1063/1.464733.
29. Gray C.G., Gubbins K.E. Theory of molecular Muids. Oxford: Clarendon Press, 1984. 575 p.