Vol. 38, issue 07, article # 3

Petrova T. M., Solodov A. M., Solodov A. A., Dеichuli V. M. Self-broadening and self-shift coefficients of O2 absorption lines in 1.27 mm spectral region. // Optika Atmosfery i Okeana. 2025. V. 38. No. 07. P. 522–528. DOI: 10.15372/AOO20250703 [in Russian].
Copy the reference to clipboard
Abstract:

Molecular oxygen is an important gas both in the Earth's atmosphere and in the atmospheres of Mars and Venus. To determine its content the highly accurate absorption line parameter values are required. For this purpose, O2 absorption spectra were recorded in the 7800–7990 cm-1 range using a Bruker IFS 125HR Fourier spectrometer. The spectra were recorded at a spectral resolution of 0.01 cm-1, a room temperature, and an optical path length of 2880 cm for five values of oxygen pressure. The intensities, broadening and shift coefficients, and parameters characterizing the dependence of broadening on the velocity of colliding molecules were determined for 55 O2 absorption lines broadened by self pressure. A good agreement between our intensity values and high-precision measurements by other authors is shown. The self-shift coefficients are obtained for the first time.

Keywords:

oxygen, Fourier spectrometer, absorption spectra, absorption line broadening and shift coefficients, carbon dioxide

Figures:
References:

1. Herzberg L., Herzberg G. Fine structure of the infrared atmospheric oxygen bands // Astrophys. J. 1947. V. 105. P. 353–359. DOI: 10.1086/144910.
2. Lowe R.P. Interferometric spectra of the Earth’s airglow ~ 1.2 to 1.6-mm // Philos. Trans. R. Soc. London Ser. A. 1969. V. 264. P. 163–169. DOI: 10.1098/rsta.1969.0011.
3. Tarasick D.W., Evans W.F. A review of the O2 (a1g) and O2 (b1½Σg+) airglow emissions // J. Adv. Space Res. 1993. V. 13, N 1. P. 145–148. DOI: 10.1016/0273-1177(93)90014-3.
4. Ball S.M., Hancock G. The relative quantum yields of O2 (а1Δg) from the photolysis of ozone at 227 K // Geophys. Res. Lett. 1995. V. 22, N 10. P. 1213–1216. DOI: 10.1029/95GL01007.
5. Ravishankara A.R., Hancock G., Kawasaki M., Matsumi Y. Photochemistry of ozone: Surprises and recent lessons // Science. 1998. V. 280, N 5360. P. 60–61. DOI: 10.1126/science.280.5360.60.
6. Traub W.A., Carleton N.P., Connes P., Noxon J.F. The latitude variation of O2 dayglow and O3 abundance on Mars // Astrophys. J. 1979. V. 229. P. 846–850. DOI: 10.1086/157019.
7. Connes P., Michel G. High-resolution Fourier spectra of stars and planets // Astrophys. J. 1974. V. 190. P. L29. DOI: 10.1086/181496.
7. Shakun A.V., Zasova L.V., Gorinov D.A., Hatuntsev I.V., Ignat'ev N.I., Patsaeva M.V., Tyurin A.V. Svechenie molekulyarnogo kisloroda O2 (а1Δg) v polose 1,27 mm i dinamika verhnei mezosfery na nochnoi storone Venery // Astronomicheskii vestnik. 2023. V. 57, N 3. P. 209–224. DOI: 10.31857/S0320930X23030088.
7. Gamache R., Goldman A. Einstein A coefficient, integrated band intensity, and population factors: Application to the ag – Xg(0, 0) O2 band // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 69, N 4. P. 389–401. DOI: 10.1016/S0022-4073(00)00072-8.
10. Hartmann J.M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87. P. 032510. DOI: 10.1103/PhysRevA.87.032510.
11. Lamouroux J., Sironneau V., Hodges J.T., Hartmann J.M. Isolated line shapes of molecular oxygen: Requantized classical molecular dynamics calculations versus measurements // Phys. Rev. A. 2014. V. 89. P. 042504. DOI: 10.1103/PhysRevA.89.042504.
12. Mendonca J., Strong K., Wunch D., Toon G.C., Long D.A., Hodges J.T., Sironneau V.T., Franklin J.E. Using a speed-dependent Voigt line shape to retrieve O2 from total carbon column observing network solar spectra to improve measurements of ХCO2 // Atmos. Meas. Tech. 2019. V. 12, N 1. P. 35–50. DOI: 10.5194/amt-12-35-2019.
13. Konefał M., Kassi S., Mondelain S., Campargue A. High sensitivity spectroscopy of the O2 band at 1.27 mm: (I) pure O2 line parameters above 7920 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106653. DOI: 10.1016/j.jqsrt.2019.106653.
14. Newman S.M., Orr-Ewing A.J., Newnham D.A., Ballard J. Temperature and pressure dependence of line widths and integrated absorption intensities for the O2 a1Δg – X3Σg(0, 0) transition // J. Phys. Chem. 2000. V. 104, N 42. P. 9467–9480. DOI: 10.1021/jp001640r.
15. Tran D.D., Tran H., Vasilchenko S., Kassi S., Campargue A., Mondelain D. High sensitivity spectroscopy of the O2 band at 1.27 mm: (II) air-broadened line profile parameters // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 240. P. 106673. DOI: 10.1016/j.jqsrt.2019.106673.
16. Fleurbaey H., Reed Z.D., Adkins E.M., Long D.A., Hodges J.T. High accuracy spectroscopic parameters of the 1.27 mm band of O2 measured with comb-referenced, cavity ring-down spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 270. P. 107684. DOI: 10.1016/j.jqsrt.2021.107684.
17. Tran D.D., Delahaye T., Armante R., Hartmann J.-M., Mondelain D., Campargue A., Fleurbaey H., Hodges J.T., Tran H. Validation of spectroscopic data in the 1.27 mm spectral region by comparisons with ground-based atmospheric measurements // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 261. P. 107495. DOI: 10.1016/j.jqsrt.2020.107495.
18. Cheah S.-L., Lee Y.-P., Ogilvie J.F. Wavenumbers, strengths, widths and shifts with pressure of lines in four bands of gaseous 16O2 in the systems ag – X3Σg and b1Δg+ – X3Σg // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 64. P. 467–482. DOI: 10.1016/S0022-4073(99)00126-0.
19. Lafferty W.J., Solodov A.M., Lugez C.L., Fraser G.T. Rotational line strengths and self-pressure-broadening coefficients for the 1.27-mm, ag – X3Σg, 0–0 band of O2 // Appl. Opt. 1998. V. 37, N 12. P. 2264–2270. DOI: 10.1364/AO.37.002264.
20. Gordon I.E, Rothman L.S., Hargreaves R.J., Hashe-mi R., Karlovets E.V., Skinner F.M. Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F.M., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makh-nev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky P.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Auwera J. Vander, Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
21. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements of air-broadening parameters of water vapour transitions in the 5090–7490 cm-1 spectral region // Mol. Phys. 2023. V. 121. P. 5–15.
22. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A., Fedorova A.A. Water vapor absorption line parameters in the 6760–7430 cm-1 region for application to CO2 rich planetary atmosphere // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 293. P. 108386.
23. Nelkin M., Ghatak A. Simple binary collision model for Van Hove’s Gs(r, t) // Phys. Rev. 1964. V. 135. P. A4. DOI: 10.1103/PhysRev.135.A4.
24. Rohart F., Mader H., Nicolaisen H.W. Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH3F by millimeter wave coherent transients // J. Chem. Phys. 1994. V. 101. P. 6475–6486. DOI: 10.1063/1.468342.
25. Rohart F., Ellendt A., Kaghat F., Mäder H. Self and polar foreign gas line broadening and frequency shifting of CH3F: Effect of the speed dependence observed by millimeter-wave coherent transients // J. Mol. Spectrosc. 1997. V. 185. P. 222–233. DOI: 10.1006/jmsp.1997.7395.
26. Ngo N.H., Lisak D., Tran H., Hartmann J.M. An isolated line shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100. DOI: 10.1016/j.jqsrt.2013.05.034.
27. Tennyson J., Bernath P.F., Campargue A., Csaszar A.G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone D.C., Hartmann J.M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.L. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) // Pure. Appl. Chem. 2014. V. 86. V. 1931–1943. DOI: 10.1515/pac-2014-0208.