According to the conclusion of the UN Intergovernmental Panel on Climate Change (IPCC), in order to determine the main causes of global warming caused by the increase in greenhouse gas content, an accurate assessment of their emissions and sinks is required, since there is still significant uncertainty in assessing their balance. To clarify this, the present work studies the heterogeneity in the distribution of their flows and sinks at the mesoscale level. Considering that soil plays a significant role in gas exchange processes, which significantly differ in properties on both scales, this approach seems very promising. The work uses hourly measurement data from three posts of integrated air composition monitoring: TOR station, the “Fonovaya” observatory, and the Basic Experimental Complex (BEC). It is shown that the differences in long-term (2013–2017) average concentrations between stations are within the ranges 116–195 mg/m3 for CO, 3.3–8.3 ppm for CO2, 0.4–0.8 mg/m3 for NO, 4.6–15.5 mg/m3 for NO2, 8.1–14.3 mg/m3 for O3, and 2.3–6.9 mg/m3 for SO2. Annual and daily variations in the concentration differences have been revealed for the first time. The results expand our knowledge of the dynamics of greenhouse and oxidizing gases in the atmosphere and can be useful in developing requirements for their measurement accuracy.
atmosphere, sulfur dioxide, methane, ozone, nitrogen oxides, carbon oxides, transport, composition
1. Summary for Policymakers // Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: Geneva, 2023. P. 1–34. DOI: 10.59327/IPCC/AR6-9789291691647.
2. Ramonet M., Ciais Ph., Sha M.K., Steinbacher M., Sweeney C. CO2 in the atmosphere: Growth and trends since 1850 // Oxford Research Encyclopedias of Climate Science. 2023. P. 1–44. DOI: 10.1093/acrefore/9780190228620.013.863.
3. Kiselev A.A., Karol' I.L. S metanom po jizni. SPb.: Glavnaya geofizicheskaya observatoriya im. A.I. Voeikova, 2019. 73 p.
4. Thompson R.L., Lassaletta L., Patra P.K., Wilson C., Wells K.C., Gressent A., Koffi E.N., Chipperfield M.P., Winiwarter W., Davidson E.A., Tian H., Canadell J.G. Acceleration of global N2O emissions seen from two decades of atmospheric inversion // Nat. Clim. Change. 2019. V. 9, N 12. P. 993–998. DOI: 10.1038/s41558-019-0613-7.
5. Desai A.R., Paleri S., Mineau J., Kadum H., Wanner L., Mauder M., Butterworth B.J., Durden D.J., Metzger S. Scaling land-atmosphere interactions: Special or fundamental? // J. Geophys. Res. Biogeosci. 2022. V. 127, N 9. P. e2022JG007097. DOI: 10.1029/2022JG007097.
6. Deak B., Botta-Dukat Z., Radai Z., Kovacs B., Apostolova I., Batori Z., Kelemen A., Lukacs K., Kiss R., Palpurina S., Sopotlieva D., Valko O. Meso-scale environmental heterogeneity drives plant trait distributions in fragmented dry grasslands // Sci. Total Environ. 2024. V. 947. P. 174355. DOI: 10.1016/j.scitotenv.2024.174355.
7. Lembrechts J.J. Nijs I. Microclimate shifts in a dynamic world // Science. 2020. V. 368, N 6492. P. 711–712.
8. Zellweger F., De Frenne P., Lenoir J., Vangansbeke P., Verheyen K., Bernhardt-Römermann M., Baeten L., Hédl R., Berki I., Brunet J., Van Calster H., Chudomelová M., Decocq G., Dirnböck T., Durak T., Heinken T., Jaroszewicz B., Kopecký M., Máliš F., Macek M., Malicki M., Naaf T., Nagel T.A., Ortmann-Ajkai A., Petrík P., Pielech R., Reczynska K., Schmidt W., Standovár T., Swierkosz K., Teleki B., Vild O., Wulf M., Coomes D. Forest microclimate dynamics drive plant responses to warming // Science. 2020. V. 368, N 6492. P. 772–775. DOI: 10.1126/science.aba6880.
9. Alferov A.M., Blinov V.G., Gitarskii M.L., Grabar V.A., Zamolodchikov D.G., Zinchenko A.V., Ivanova N.P., Ivahov V.M., Karabanyu R.T., Karelin D.V., Kalyujnyi I.L., Kashin F.V., Konyushkov D.E., Korotkov V.N., Krovotyntsev V.A., Lavrov S.A., Marunich A.S., Paramonova N.N., Romanovskaya A.A., Trunov A.A., Shilkin A.V. Yuzbekov A.K. Monitoring potokov parnikovyh gazov v prirodnyh ekosistemah. Saratov: Amirit, 2017. 279 p.
10. Shi D., Jiang Y., Li W., Wen Y., Wu F., Zhao S. Spatial-temporal heterogeneity of spring phenology in boreal forests as estimated by satellite solar-induced chlorophyll fluorescence and vegetation index // Agric. Forest Meteorol. 2024. V. 346. P. 109888. DOI: 10.3390/ijerph182413031.
11. Ol'chev A.V., Muhartova Yu.V., Levashova N.T., Volkova E.M., Ryjova M.S., Mangura P.A. Vliyanie prostranstvennoi neodnorodnosti rastitel'nogo pokrova i rel'efa na vertikal'nye potoki СО2 v prizemnom sloe atmosfery // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 5. P. 612–623.
12. Cao Y., Yue X., Liao H., Wang X., Lei Y., Zhou H. Impacts of land cover changes on summer surface ozone in China during 2000–2019 // Sci. Total Environ. 2024. V. 948. P. 174821. DOI: 10.1016/j.scitotenv.2024.174821.
13. Smagin A.V., Karelin D.V. O vliyanii vetra na gazoobmen pochvy i atmosfery // Pochvovedenie. 2021, N 3. P. 327–337. DOI: 10.31857/S0032180X21030138.
14. Acevedo O.C., Osvaldo Moraes O.L.L., Degrazia G.A., Fitzjarrald D.R., Manzi A.O., Campos J.G. Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? // Agric. Forest Meteorol. 2009. V. 149, N 1. P. 1–10. DOI: 10.1016/j.agrformet.2008.06.014.
15. Stepanenko S.N. Mezometeorologiya: ucheb. posobie. Odessa: OGMI, 2001. 223 p.
16. Obzor sostoyaniya i zagryazneniya okrujayushchei sredy v Rossiiskoi Federatsii za 2019 year. Rosgidromet, 2020. 217 p.
17. Burrows J.P., Martin R. Satellite observations of tropospheric trace gases and aerosols. Introduction // IGAC Newsletter. 2007. N 35. P. 2–7. DOI: 10.1007/978-94-011-4353-0_27.
18. Tollefson J. Carbon-sensing satellite system faces high hurdles // Nature. 2016. V. 533, N 7604. P. 446–447. DOI: 10.1038/533446a.
19. Popkin G. Commercial space sensors go high-tech // Nature. 2017. V. 545, N 7655. P. 397–398.
20. Gibadullin R.R., Muhartova Yu.V., Kochkina M.V., Satosina E.M., Stepanenko V.M., Kerimov I.A., Gulev S.K., Ol'chev A.V. Modelirovanie prostranstvennoi izmenchivosti polei vetra i potokov СО2 i СН4 nad neodnorodnoi podstilayushchei poverhnost'yu // Meteorol. i gidrol. 2024. N 9. P. 93–100.
21. Berchet A., Pison I., Chevallier F., Paris J.-D., Bousquet P., Bonne J.-L., Arshinov M.Yu., Belan B.D., Cressot C., Davydov D.K., Dlugokencky E.J., Fofonov A.V., Galanin A., Lavrič J., Machida T., Parker R., Sasakawa M., Spahni R., Stocker B.D., Winderlich J. Natural and anthropogenic methane fluxes in Eurasia: A meso-scale quantification by generalized atmospheric inversion // Biogeosci. 2015. V. 12, N 18. P. 5393–5414. DOI: 10.5194/bg-12-5393-2015.
22. Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Issledovanie sostava vozduha v razlichnyh vozdushnyh massah // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 752–759. DOI: 10.15372/AOO20180909; Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Study of air composition in different air masses // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 72–79.
23. Reshetov V.D. Izmenchivost' meteorologicheskih elementov v atmosfere. L.: Gidrometeoizdat, 1973. 215 p.
24. O sostave, tochnosti i prostranstvenno-vremennom razreshenii informatsii neobhodimoi dlya gidrometeorologicheskogo obespecheniya narodnogo hozyaistva i slujby gidrometeorologicheskih prognozov / pod red. M.A. Petrosyants, V.D. Reshetova. L.: Gidrometeoizdat, 1975. 220 p.
25. WMO GAW (2018). 19th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases And Related Tracers Measurement Techniques / GAW Report № 242. WMO, 2018. 150 p.
26. Antonov K.L., Gulyaev E.A., Markelov Yu.I., Poddubnyi V.A. Zakonomernosti izmeneniya kontsentratsii СО2 i СН4 po rezul'tatam izmerenii v prizemnom sloe atmosfery gorodskoi i zagorodnoi territorii v 2021–2022 years // Meteorol. i gidrol. 2024. N 5. P. 111–124.
27. Fang S.X., Zhou L.X., Tans P.P., Ciais P., Steinbacher M., Xu L., Luan T. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China // Atmos. Chem. Phys. 2014. V. 14, N 5. P. 2541–2554. DOI: 10.5194/acpd-13-27287-2013.
28. Kilkki J., Aalto T., Hatakka J., Portin H., Laurila T. Atmospheric CO2 observations at Finnish urban and rural sites // Boreal Environ. Res. 2015. V. 20, N 2. P. 227–242.
29. Belikov D., Arshinov M., Belan B., Davydov D., Fofonov A. Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at tower network in Siberia during 2005–2016 // Atmosphere. 2019. V. 10, N 11. P. 698. DOI: 10/3390/atmos10110689.
30. Obolkin V.A., Shamanskii Yu.V., Hodjer T.V., Falits A.V. Mezomasshtabnye protsessy perenosa atmosfernyh zagryaznenii v raione YUjnogo Baikala // Okeanologicheskie issledovaniya. 2019. V. 47, N 3. P. 104–113.
31. Stockwell W.R., Fitzgerald R.M., Lu D., Perea R. Differences in the variability of measured and simulated tropospheric ozone mixing ratios over the Paso del Norte Region // J. Atmos. Chem. 2013. V. 70, N 1. P. 91–104.
32. Huang Y.Y., Donaldson D.J. Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline // Atmos. Chem. Phys. 2024. V. 24, N 4. P. 2387–2398.
33. Yurganov L.N., Jaffe D.A., Pullman E., Novelli P.C. Total column and surface densites of atmospheric carbon monoxide in Alaska, 1995 // J. Geophys. Res. 1998. V. 103, N D15. P. 19337–19345.
34. Barret B., De Maziere M., Mahieu E. Ground-based FTIR measurements of CO from the Jungfraujoch: Characterization and comparison with in situ surface and MOPITT data // Atmos. Chem. Phys. Discuss. 2003. V. 3, N 5. P. 4857–4878. DOI: 10.5194/acp-3-2217-2003.
35. Tarasova O.A., Brenninkmeijer C.A.M., Assonov S.S., Elansky N.F., Röckmann T., Sofiev M.A. Atmospheric CO along the Trans-Siberian Railroad and River Ob: Source identification using isotope analysis // J. Atmos. Chem. 2007. V. 57, N 2. P. 135–152.
36. Chameidas W.L., Davis D.D., Bradshaw J., Sandholm J., Rodgers M., Baum B., Ridley B., Madronich S., Carrol M.A., Gregory G., Schiff H.I., Hastle D.R., Torres A., Condon E. Observed and model-calculated NO2/NO ratios in tropospheric air sampled during the NASA GTE/CITE-2 field study // J. Geophys. Res. 1990. V. 95, N D7. P. 10235–10247.
37. De Arellano J.V.-G., Duynkerke P.G. Influence of chemistry on the flux-gradient relationships for the NO–O3–NO2 system // Bound.-Lay. Meteorol. 1992. V. 61, N 4. P. 375–387.
38. Duyzer J.H., Deinum G., Baak J. The interpretation of measurements of surface exchange of nitrogen oxides: Correction for chemical reactions // Phil. Trans. R. Soc. Lond. A. 1995. V. 351, N 1696. P. 231–248.
39. Belan B.D., Kovalevskii V.K., Plotnikov A.P., Sklyadneva T.K. Vremennaya dinamika ozona i okislov azota v prizemnom sloe v raione g. Tomska // Optika atmosf. i okeana. 1998. V. 11, N 12. P. 1325–1327.
40. Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V. Emissiya i pogloshchenie parnikovyh gazov lugovoi ekosistemoi yujnoi taigi Zapadnoi Sibiri: otsenka vklada pochvennoi sostavlyayushchei po dannym nablyudenii 2023 year // Optika atmosf. i okeana. 2024. V. 37, N 9. P. 760–772. DOI: 10.15372/AOO20240906; Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V. Emission and sink of greenhouse gases in the grassland ecosystem of southern taiga of Western Siberia: Estimates of the contribution of soil flux component from observations of 2023 // Atmos. Ocean. Opt. 2024. V. 37, N 6. P. 865–880.
41. Belan B.D. Ozon v troposfere. Tomsk: Izd-vo IOA SO RAN, 2010. 488 p.
42. Semenov N.N. Tsepnye reaktsii. M.: Nauka, 1986. 535 p.
43. Marchuk G.I. Chislennoe modelirovanie v zadachah ohrany okrujayushchei sredy. M.: OVM AN SSSR, M., 1989. 36 p.