Vol. 38, issue 07, article # 6

Nerobelov P. M., Nerobelov G. M., Timofeev Yu. M. Estimates of solar radiation molecular absorption in the atmosphere in the past, present and future. // Optika Atmosfery i Okeana. 2025. V. 38. No. 07. P. 551–557. DOI: 10.15372/AOO20250706 [in Russian].
Copy the reference to clipboard
Abstract:

Human activity is currently causing global warming of the planet, primarily due to the emission of greenhouse gases into the Earth's atmosphere (CO2, CH4, etc.). Despite international agreements and commitments made by various countries, the concentration of key greenhouse gases – CO2 and CH4 – in the atmosphere continues to rise. The increase in greenhouse gas levels leads to changes in the Earth’s radiation balance, which is the cause of modern climate changes affecting many extreme weather and climate events across the globe. One of the most important components of the atmospheric radiation balance is the molecular absorption of solar radiation by greenhouse gases. In this study, using the SCIATRAN model and calculations of solar radiation fluxes in the spectral range of 1–4 μm, the molecular absorption of solar radiation by key anthropogenic greenhouse gases, CO2 and CH4, is analyzed for their past, present, and future concentrations. The calculations were performed for three latitude zones (tropics, mid-latitudes, and subarctic) and two seasons (winter and summer). According to the calculations, the maximal molecular absorption of incoming solar radiation in the 1–4 mm range by the greenhouse gases occurs in the tropics and reaches 153–168 W/m2 throughout the year. Over the period from 1750 to 2100, the molecular absorption of solar radiation by CO2 and CH4 is expected to increase to 0.8–1.2 W/m2. The projected increase in molecular absorption of solar radiation by the end of the 21st century is close to current estimates of changes in Earth’s radiation balance, which range from 0.5 to 1.0 W/m2. At the same time, the global average increase in the molecular absorption of outgoing Earth’s thermal radiation is approximately 3–4 times greater than the increase in solar radiation absorption. Both of these changes, driven by rising greenhouse gas concentrations, intensify the Earth energy imbalance and contribute to changes in the planet average temperature.

Keywords:

Earth radiation balance, molecular absorption, solar radiation, greenhouse gases, CO2, СН4, SCIATRAN

Figures:
References:

1. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / H. Lee, J. Romero (eds.). IPCC, Geneva, 2023. P. 35–115. DOI: 10.59327/IPCC/AR6-9789291691647.
2. Summary for policymakers // Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / H. Lee, J. Romero (eds.). IPCC, Geneva, 2023. P. 1–34. DOI: 10.59327/IPCC/AR6-9789291691647.001.
3. Tretii otsenochnyi doklad ob izmeneniyah klimata i ih posledstviyah na territorii Rossiiskoi Federatsii. Obshchee rezyume / pod red. A.A. Kiseleva, E.L. Mahotkina, T.V. Pavlova: SPb.: Naukoemkie tehnologii, 2022. 124 p.
4. Atlas of the Heat Balance of the Earth Sphere. Joint Geophysical Committee Presidium of the Academy of Sciences / M.I. Budyko (ed.). Moscow: Idrometcorozdat, 1963. 5 p.
5. Hansen J., Nazarenko L., Ruedy R., Sato M., Willis J., Del Genio A., Koch D., Lacis A., Lo K., Menon S., Novakov T., Perlwitz J., Russell G., Schmidt G.A., Tausnev N. Earth’s energy imbalance: Confirmation and implications // Science. 2005. V. 308. P. 1431–1435. DOI: 10.1126/science.1110252.
6. Smith G.L., Priestley K.J., Loeb N., Wielicki B., Charlock T.P., Minnis P., Doelling D.R., Rutan D.A. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future // Adv. Space Res. 2011. V. 48, iss. 2. P. 254–263.
7. Cheng L., Trenberth K.E., Fasullo J., Boyer T., Abraham J., Zhu J. Improved estimates of ocean heat content from 1960 to 2015 // Sci. Adv. 2017. V. 3. DOI: 10.1126/sciadv.1601545.
8. von Schuckmann K., Minière A., Gues F., Cuesta-Valero F.J., Kirchengast G., Adusumilli S., Straneo F., Ablain M., Allan R.P., Barker P.M., Beltrami H., Blazquez A., Boyer T., Cheng L., Church J., Desbruyeres D., Dolman H., Domingue C.M., García-García A., Giglio D., Gilson J.E., Gorfer M., Haimberger L., Hakuba M.Z., Hendricks S., Hosoda S., Johnson G.C., Killick R., King B., Kolodziejczyk N., Korosov A., Krinner G., Kuusela M., Landerer F.W., Langer M., Lavergne T., Lawrence I., Li Y., Lyman J., Marti F., Marzeion B., Mayer M., MacDougall A.H., McDougall T., Monselesan D.P., Nitzbon J., Otosaka I., Peng J., Purkey S., Roemmich D., Sato K., Sato K., Savita A., Schweiger A., Shepherd A., Seneviratne S.I., Simons L., Slater D.A., Slater T., Steiner A.K., Suga T., Szekely T., Thiery W., Timmermans M.-L., Vanderkelen I., Wjiffels S.E., Wu T., Zemp M. Heat stored in the Earth system 1960–2020: Where does the energy go? // Earth Syst. Sci. Data. 2023. V. 15. P. 1675–1709. DOI: 10.5194/essd-15-1675-2023.
9. Loeb N.G., Johnson G.C., Thorsen T.J., Lyman J.M., Rose F.G., Kato S. Satellite and ocean data reveal marked increase in Earth’s heating rate // Geophys. Res. Lett. 2021. V. 48. DOI: 10.1029/2021GL093047.
10. Hakuba M.Z., Frederikse T., Landerer F.W. Earth’s energy imbalance from the ocean perspective (2005–2019) // Geophys. Res. Lett. 2021. V. 48. DOI: 10.1029/2021GL093624.
11. Raghuraman S.P., Paynter D., Ramaswamy V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance // Nat. Commun. 2021. V. 12. DOI: 10.1038/s41467-021-24544-4.
12. Loeb N.G., Ham S.-H., Allan R.P., Thorsen T.J., Meyssignac B., Kato S., Johnson G.C., Lyman J.M. Observational assessment of changes in Earth’s energy imbalance since 2000 // Surv. Geophys. 2024. V. 45, N 6. P. 1757–1783. DOI: 10.1007/s10712-024-09838-8.
13. Forster P., Storelvmo T., Armour K., Collins W., Dufresne J.-L., Frame D., Lunt D.J., Mauritsen T., Palmer M.D., Watanabe M., Wild M., Zhang H. The Earth’s energy budget, climate feedbacks, and climate sensitivity // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. P. 923–1054. DOI: 10.1017/ 9781009157896.009.
14. Jacob D.J., Turner A.J., Maasakkers J.D., Sheng J., Sun K., Liu X., Chance K., Aben I., McKeever J., Frankenberg C. Satellite observations of atmospheric methane and their value for quantifying methane emissions // Chem. Phys. 2016. V. 16. P. 14371–14396. DOI: 10.5194/acp-16-14371-2016.
15. Rozanov V.V., Rozanov A.V., Kokhanovsky A.A., Burrows J.P. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 133. P. 13–71. DOI: 10.1016/j.jqsrt.2013.07.004.
16. Fontenla J., White O.R., Fox P.A., Avertt E.H., Kurucz R.L. Calculation of solar irradiances. I. Synthesis of the solar spectrum // Astrophys. J. 1999. V. 518. P. 480–500. DOI: 10.1086/307258.
17. Anderson G.P., Clough S.A., Kneizys F.X., Chet-wynd J.H., Shettle E.P. AFGL atmospheric constituent profiles (0–120 km) // Environ. Res. Papers. 1986. V. 954. P. 43.
18. Strassmann K.M., Plattner G.K., Joos F. CO2 and non-CO2 radiative forcings in climate projections for twenty-first century mitigation scenarios // Clim Dyn. 2009. V. 33. P. 737–749. DOI: 10.1007/s00382-008-0505-4.
19. Timofeev Yu.M., Virolainen Ya.A., Polyakov A.V. Otsenki variatsii radiatsionnogo forsinga dlya uglekislogo gaza v poslednee stoletie i v budushchem // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 856–859. DOI: 10.15372/AOO20191009; Timofeev Yu.M., Virolainen Ya.A., Polyakov A.V. Estimates of variations in CO2 radiative forcing in the last century and in the future // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 206–209.
20. Akishina S.V., Mikhailova A.S., Timofeyev Yu.M., Filippov N.N. Otsenki variatsii radiatsionnogo vozdeistviya metana v proshlom i budushchem // Optika atmosf. i okeana. 2023. V. 36, N 10. P. 818–821. DOI: 10.15372/AOO20231005; Akishina S.V., Mikhailova A.S., Timofeyev Yu.M., Filippov N.N. Estimates of variations in radiative forcing of methane in the past and in the future // Atmos. Ocean. Opt. 2023. V. 36, N S1. P. S74–S77.
21. Wallace J.M., Hobbs P.V. Atmospheric Science: An Introductory Survey. New York: Academic Press, 1977. 467 p.