Vol. 38, issue 07, article # 8

Zenkova P. N. Simulation of aerosol optical properties using an ensemble of solutions taking into account the standard measurement uncertainty of input parameters. // Optika Atmosfery i Okeana. 2025. V. 38. No. 07. P. 567–570. DOI: 10.15372/AOO20250708 [in Russian].
Copy the reference to clipboard
Abstract:

Retrieval of atmospheric aerosol optical properties from limited data volume is a crucial task for assessing radiative forcing and simulating climate in high latitudes. This work presents, for the first time, an approach to simulation of aerosol optical characteristics based on a limited set of measured input parameters using a representative ensemble of solutions. The numerical experiment involves comparison of aerosol optical properties for a typical summer background haze calculated from averaged measured parameters assumed as “reference”. In each ensemble realization, a random deviation within the range of instrumental uncertainty was introduced for each input parameter, followed by calculation of optical properties. It is shown that, for the chosen model scenario, 200 ensemble members are sufficient to achieve retrieval accuracy of 2%. The results are applicable for evaluating radiatively significant atmospheric properties based on airborne and shipborne measurements, and for validation of satellite retrievals and climate models. The proposed technique can also be used in regional aerosol pollution monitoring applications.

Keywords:

aerosol, empirical model, optical properties, measurement uncertainty, ensemble modeling, Monte Carlo method, phase function, single scattering albedo

References:

1. Kok J.F., Ridley D.A., Zhou Q., Miller R.L., Zhao C., Heald C.L., Albani S. Smaller desert dust cooling effect estimated from analysis of dust size and abundance // Nat. Geosci. 2017. V. 10, N 4. P. 274–278. DOI: 10.1038/ngeo2912.
2. Bellouin N., Quaas J., Gryspeerdt E., Kinne S., Stier P., Watson-Parris D., Schulz M. Bounding global aerosol radiative forcing of climate change // Rev. Geophys. 2020. V. 58, N 1. P. e2019RG000660. DOI: 10.1029/2019RG000660.
3. Che H., Zhang X., Li Y., Zhang Y., Zhang X., Quan J., Shi G. Haze trends over the capital cities of 31 provinces in China, 1981–2010 // Theor. Appl. Climatol. 2009. V. 97, N 3–4. P. 235–242. DOI: 10.1007/s00704-008-0059-8.
4. Zhang X., Liang C., Wang Y., Chen H. Impact of measurement uncertainties on aerosol optical properties and radiative forcing estimates // Atmos. Chem. Phys. 2019. V. 19, N 7. P. 4567–4581. DOI: 10.5194/acp-19-4567-2019.
5. Liu X., Easter R.C., Ghan S.J., Zaveri R., Rasch P., Shi X., Zhang K. Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5 // Geosci. Model Dev. 2016. V. 9, N 2. P. 587–609. DOI: 10.5194/gmd-9-587-2016.
6. Schmale J., Schneider J., Nemitz E., Tang Y.S., Dragosits U., Blackall T.D., Sutton M.A. Shipborne measurements of aerosol properties in the Atlantic Ocean and the Southern Ocean // Atmos. Chem. Phys. 2018. V. 18, N 9. P. 6397–6414. DOI: 10.5194/acp-18-6397-2018.
7. Brock C.A., Wagner N.L., Anderson B.E., Attwood A.R., Beyersdorf A., Campuzano-Jost P., Ziemba L.D. Aerosol optical properties in the southeastern United States during SEAC4RS: A comparison of airborne in situ and remote sensing measurements // J. Geophys. Res.: Atmos. 2019. V. 124, N 7. P. 3720–3743. DOI: 10.1029/2018JD029501.
8. Kozlov V.S., Panchenko M.V., Shmargunov V.P., Kozlov A.V., Pol’kin V.V., Terpugova S.A., Yausheva E.P. Long-term investigations of the spatiotemporal variability of black carbon and aerosol concentrations in the troposphere of West Siberia and Russian subarctic // Chem. Sustain. Dev. 2016. V. 24, N 4. P. 423–440. DOI: 10.15372/KhUR20160401.
9. Chen H., Gu X., Cheng T., Li Z., Yu T., Zheng Y., Li K. The spatial–temporal variations in optical properties of atmosphere aerosols derived from AERONET dataset over China // Meteorol. Atmos. Phys. 2013. V. 122, N 1–2. P. 65–73. DOI: 10.1007/s00703-013-0268-2.
10. Konovalov I.B., Golovushkin N.A., Beekmann M., Panchenko M.V., Andreae M.O. Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations // Atmos. Meas. Tech. 2021. V. 14. P. 6647–6673. DOI: 10.5194/amt-14-6647-2021.
11. Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Razvitie empiricheskoi modeli opticheskih harakteristik aerozolya Zapadnoi Sibiri // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 192–198. DOI: 10.15372/AOO20210305; Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Development of an empirical model of optical characteristics of aerosol in Western Siberia // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 320–326.
12. Schutgens N.A.J., Gryspeerdt E., Weigum N., Tsyro S., Goto D., Schulz M., Stier P. Will a perfect model agree with perfect observations? The impact of spatial sampling // Atmos. Chem. Phys. 2020. V. 20, N 5. P. 3131–3149. DOI: 10.5194/acp-20-3131-2020.
13. Redemann J., Wood R., Zuidema P., Doherty S.J., Luna B., LeBlanc S.E., Shinozuka Y. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol-cloud-radiation interactions in the southeast Atlantic basin // Atmos. Chem. Phys. 2021. V. 21, N 3. P. 1507–1563. DOI: 10.5194/acp-21-1507-2021.
14. Zenkova P.N., Terpugova S.A., Pol’kin V.V., Panchenko M.V. Analysis of sensitivity of the optical characteristics reconstructed by the model of tropospheric aerosol of Western Siberia to uncertainties in the initial data // Proc. SPIE. 2023. V. 12780. CID: 1278027. DOI: 10.1117/12.2689344.
15. Lam R., Sanchez-Gonzalez A., Willson M., Wirnsberger P., Fortunato M., Alet F., Ravuri S., Ewalds T., Eaton-Rosen Z., Hu W., Merose A., Hoyer S., Holland G., Vinyals O., Stott J., Pritzel A., Mohamed Sh., Battaglia P. Learning skillful medium-range global weather forecasting // Science. 2023. P. 1416–1421. DOI: 10.1126/science.adi2336.
16. Potapov V.P., Yukina N.I., Schastlivtsev E.L. Otsenka kachestva vod i ansamblevye metody // Vestn. NTS VostNII. 2022. N 4. P. 125–136. DOI: 10.25558/VOSTNII.2022.92.48.014.
17. Gryspeerdt E., Stier P., Partridge D.G. Satellite observations of cloud regime development: The role of aerosol processes // Atmos. Chem. Phys. 2014. V. 14. P. 1141–1158. DOI: 10.5194/acp-14-1141-2014.
18. Panchenko M.V., Kozlov V.S., Polkin V.V., Terpugova S.A., Uzhegov V.N., Chernov D.G., Shmargunov V.P., Yausheva E.P., Zenkova P.N. Aerosol characteristics in the near-ground layer of the atmosphere of the city of Tomsk in different types of aerosol weather // Atmosphere. 2020. V. 11, N 1. P. 20. DOI: 10.3390/atmos11010020.
19. Panchenko M., Yausheva E., Chernov D., Kozlov V., Makarov V., Popova S., Shmargunov V. Submicron aerosol and black carbon in the troposphere of southwestern Siberia (1997–2018) // Atmosphere. 2021. V. 12. P. 351. DOI: 10.3390/atmos12030351.
20. Panchenko M.V., Terpugova S.A., Kozlov V.S., Pol'kin V.V., Yausheva E.P. Godovoi hod kondensatsionnoi aktivnosti submikronnogo aerozolya v prizemnom sloe atmosfery Zapadnoi Sibiri // Optika atmosf. i okeana. 2005. V. 18, N 8. P. 678–683.