Vol. 38, issue 08, article # 1

Aksenov V. P., Bogdanov O. V., Dudorov V. V., Kagadey V. A., Kazinsky P. O., Kolosov V. V., Korolev P. S., Lazarenko G. Yu., Levitsky M. E., Ryakin V. A. Transmission of orbital angular momentum multiplexed signal with coherent laser beam combining. // Optika Atmosfery i Okeana. 2025. V. 38. No. 08. P. 599-607. DOI: 10.15372/AOO20250801 [in Russian].
Copy the reference to clipboard
Abstract:

A new method for wireless byte-by-byte optical transmission of a digital signal multiplexed by the value of orbital angular momentum (OAM) of electromagnetic wave is presented. The transmitter is a round array of coherent laser beams formed by splitting original narrow-band laser radiation into eight channels. Data transmission channels with different OAM values are formed through interference combining of eight coherent laser beams in the far diffraction zone. The amplitude and phase of these beams vary proportionally to the values of Fourier images of information signals coming from the programmable controller to the amplitude and phase modulators of the round array of laser beams. The wave field propagates in space and comes at the input of the receiving telescope. To demultiplex the signal, the sorter of OAM modes is used. It comprises beam splitters, vortex phase plates, focusing lenses, photodetectors, and a comparator. The sorter distributes the incoming radiation into eight channels, which differ in the OAM values in the range from –3 to +4. Upon the processing, the structure of a digital signal byte is reconstructed at the vortex phase plates at the photodetectors inputs. The combining of eight laser beams in the comparator yields the complete structure of the transmitted digital signal. A conceptual diagram of an experimental setup implementing this method is proposed. The possibility of its practical implementation is demonstrated through numerical simulation. Some technical methods improving the efficiency of the method are suggested, and the advantages of the method are described.

Keywords:

orbital angular momentum, multiplexing, channel compression, byte, coherent combining

Figures:
References:

1. Rubinsztein-Dunlop H., Forbes A., Berry M.V., Dennis M.R., Andrews D.L., Mansuripur M., Denz C., Alpmann C., Banzer P., Bauer T., Karimi E., Marrucci L., Padgett M., Ritsch-Marte M., Litchinitser N.M., Bigelow N.P., Rosales-Guzmán C., Belmonte A., Torres J.P., Neely T.W., Baker M., Gordon R., Stilgoe A.B., Romero J., White A.G., Fickler R., Willner A.E., Xie G., McMorran B., Weiner A.M. Roadmap on structured light // J. Opt. 2017. V. 19, N 1. P. 013001-1–013001-51. DOI: 10.1088/2040-8978/19/1/013001.
2. Noor S.K., Yasin M.N.M., Ismail A.M., Osman M.N., Soh P.J., Ramli N. A review of orbital angular momentum vortex waves for the next generation wireless communications // IEEE Access. 2022. V. 10. P. 89465–89484. DOI: 10.1109/access.2022.3197653.
3. Willner A.E., Su X., Zhou H., Minoofar A., Zhao Z., Zhang R., Tur M., Molisch A.F., Lee D., Almaiman A. High capacity terahertz communication systems based on multiple orbital-angular-momentum beams // J. Opt. 2022. V. 24. P. 124002-1–124002-19. DOI: 10.1088/2040-8986/ac9c16.
4. Aksenov V.P., Dudorov V.V., Kolosov V.V., Pogutsa Ch.E., Abramova E.S. Registratsiya orbital'nogo uglovogo momenta lazernogo puchka cherez ego razlozhenie po opticheskim vikhryam i ego ispol'zovanie v sisteme svyazi v turbulentnoi atmosfere // Optika atmosf. i okeana. 2020. V. 33, N 5. P. 347–357. DOI: 10.15372/AOO20200504.
5. Aksenov V.P., Dudorov V.V., Kolosov V.V., Pogutsa C.E. Optical communication in a turbulent atmosphere via the orbital angular momentum of a laser beam. I. Mode purity of OAM transmission // Appl. Opt. 2024. V. 63, N 28. P. 7475–7484. DOI: 10.1364/AO.530512.
6. Aksenov V.P., Dudorov V.V., Kolosov V.V., Pogutsa C.E. Optical communication in a turbulent atmosphere via the orbital angular momentum of a laser beam. II. Symbol error rate in a data line // Appl. Opt. 2024. V. 63, N 28. P. 7485–7490. DOI: 10.1364/AO.530548.
7. Aksenov V.P., Dudorov V.V., Filimonov G.A., Kolosov V.V., Venediktov V.Y. Vortex beams with zero orbital angular momentum and non-zero topological charge // Opt. Laser Technol. 2018. V. 104. P. 159–163. DOI: 10.1016/j.optlastec.2018.02.022.
8. Aksenov V.P., Dudorov V.V., Kolosov V.V., Levitsky M.E. Synthesized vortex beams in the turbulent atmosphere // Front. Phys. 2020. V. 8. P. 143-1–143-13. DOI: 10.3389/fphy.2020.00143.
9. Long J., Jin K., Chen Q., Chang H., Chang Q., Ma Y., Wu J., Su R., Ma P., Zhou P. Generating the 1.5 kW mode-tunable fractional vortex beam by a coherent beam combining system // Opt. Lett. 2023. V. 48, N 19. P. 5021–5024. DOI: 10.1364/OL.502321.
10. Shu B., Zhang Y., Chang H., Tang S., Leng J., Zhou P. Integrated coherent beam combining system for orbital-angular-momentum shift-keying-based free-space optical links // Adv. Photon. Nexus. 2024. V. 3, N 3. P. 036003-1–036003-11. DOI: 10.1117/1.APN.3.3.036003.
11. Billault V., Leveque S., Maho A., Welch M., Bourderionnet J., Lallier E., Sotom M., Kernec A.Le., Brignon A. Optical coherent combining of high-power optical amplifiers for free-space optical communications // Opt. Lett. 2023. V. 48, N 19. P. 3649–3652. DOI: 10.1364/OL.494908.
12. Rouzé B., Pichon P., Gay M., Bramerie L., Lombard L., Durécu A. Experimental study of the impact of carrying a telecom signal on LOCSET-based coherent beam combining // Opt. Express. 2023. V. 31, N 16. P. 26552–26564. DOI: 10.1364/OE.497156.
13. Thidé B., Then H., Sjöholm J., Palmer K., Bergman J., Carozzi T.D., Istomin Ya.N., Ibragimov N.H., Khamitova R. Utilization of photon orbital angular momentum in the low-frequency radio domain // Phys. Rev. Lett. 2007. V. 99. P. 087701-1–087701-4. DOI: 10.1103/PhysRevLett.99.087701.
14. Mohammadi S.M., Daldor L.K.S., Forozesh K., Thidé B., Bergman J.E.S., Isham B., Karlsson R., Carozzi T.D. Orbital angular momentum in radio: Measurement methods // Radio Sci. 2010. V. 45. P. RS4007-1–RS4007-14. DOI: 10.1029/2009RS004299.
15. Li Z., Qu F., Wei Y., Yang G., Xu W., Xu J. The limits of effective degrees of freedom in UCA based orbital angular momentum multiplexed communications // Sci. Rep. 2020. V. 10. P. 5216-1–5216-11. DOI: 10.1038/s41598-020-61329-z.
16. Papathanasopoulos A., Rahmat-Samii Y. Fundamentals of orbital angular momentum beams: Concepts, antenna analogies, and applications // Electromagnetic Vortices: Wave Phenomena and Engineering Applications. Hoboken: Wiley. 2022. P. 3–32. DOI: 10.1002/9781119662945.ch1.
17. Sasaki H., Yagi Y., Kudo R., Lee D. 1.58 Tbps OAM multiplexing wireless transmission with wideband Butler matrix for sub-THz band // IEEE J. Sel. Areas Commun. 2024. V. 42, N 6. P. 1613–1625. DOI: 10.1109/jsac.2024.3389125.
18. Padgett M.J., Miatto F.M., Lavery M.P.J., Zeilinger A., Boyd R.W. Divergence of an orbital-angular-momentum-carrying beam upon propagation // New J. Phys. 2015. V. 17, N 2. P. 023011-1–023011-5. DOI: 10.1088/1367-2630/17/2/023011.
19. Yagi Y., Sasaki H., Lee D. Prototyping of 40 GHz band orbital angular momentum multiplexing system and evaluation of field wireless transmission experiments // IEEE Access. 2022. V. 10. P. 130040–130047. DOI: 10.1109/ACCESS.2022.3228545.
20. Chen R., Zhou J., Long W.-X., Zhang W. Hybrid circular array and Luneberg lens for long-distance OAM wireless communications // IEEE Trans. Commun. 2023. V. 71, N 1. P. 485–497. DOI: 10.1109/TVT.2023.3309034.
21. Khan M.I.W., Woo J., Yi X., Ibrahim M.I., Yazicigil R.T., Chandrakasan A.P. A 0.31-THz orbital-angular-momentum (OAM) wave transceiver in CMOS with bits-to-OAM mode mapping // IEEE J. Sol.-State Circ. 2022. V. 57, N 5. P. 1344–1357. DOI: 10.1109/jssc.2022.3141366.
22. Zheng S., Hui X., Zhu J., Chi H., Jin X., Yu S., Zhang X. Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture // Opt. Express. 2015. V. 23, N 9. P. 12251–12257. DOI: 10.1364/OE.23.012251.
23. Zhang C., Ma L. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna // Sci. Rep. 2017. V. 7. P. 4585-1–4585-8. DOI: 10.1038/s41598-017-04313-4.
24. Chen X., Xue W. OAM Communications in multipath environments // Electromagnetic Vortices: Wave Phenomena and Engineering Applications. Hoboken: Wiley. 2022. P. 321–356. DOI: 10.1002/9781119662945.ch11.
25. Kazinski P.O., Korolev P.S., Lazarenko G.Yu., Ryakin V.A. Multiplexing signals with twisted photons by a circular arc phased array // Annals Phys. 2024. V. 462. P. 16961-1–16961-14. DOI: 10.1016/j.aop.2024.169610.
26. Vinogradov M.E., Rudenko O.V., Sukhorukov A.P. Teoriya voln. M.: Nauka, 1990. 432 p.
27. Kurti R.S., Halterman K., Shori R.K., Wardlaw M.J. Discrete cylindrical vector beam generation from an array of optical fibers // Opt. Express. 2009. V. 17, N 16. P. 13982–13988. DOI: 10.1364/OE.17.013982.
28. Adamov E.V., Aksenov V.P., Dudorov V.V., Kolosov V.V., Levitskii M.E. Controlling the spatial structure of vector beams synthesized by a fiber laser array // Opt. Laser Technol. 2022. V. 154. P. 108351. DOI: 10.1016/j.optlastec.2022.108351.
29. Beitmen G., Erdeyi A. Vysshie transtsendentnye funktsii. V. 2. M.: Nauka. 1974. 296 p.
30. Fleck J.A., Morris J.R., Feit M.D. Time-dependent propagation of high energy laser beams through the atmosphere // Appl. Phys. A. 1976. V. 10, N 2. P. 129–160.
31. Golub M.A., Karpeev S.V., Kazanskii N.L., Mirzov A.V., Sisakyan I.N., Soifer V.A., Uvarov G.V. Fazovye prostranstvennye fil'try, soglasovannye s poperechnymi modami // Kvant. elektron. 1988. V. 15, N 3. P. 617–618.
32. Volyar A.V., Brets'ko M.V., Akimova Ya.E., Egorov Yu.A. Sortirovka puchkov Lagerra-Gaussa po radial'nomu chislu posredstvom momentov intensivnosti // Komp'yuternaya optika. 2020. V. 44, N 2. P. 155–166.
33. Berkhout G.C.G., Lavery M.P.J., Courtial J., Beijersbergen M.W., Padgett M.J. Efficient sorting of orbital angular momentum states of light // Phys. Rev. Lett. 2010. V. 105, N 15. P. 153601. DOI: 10.1103/PhysRevLett.105.153601.
34. Mirhosseini M., Malik M., Shi Z., Boyd R.W. Efficient separation of the orbital angular momentum eigenstates of light // Nat. Commun. 2013. V. 4, N 1. P. 2781. DOI: 10.1038/ncomms3781.
35. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery M.P.J., Tur M., Ramachandran S., Molisch A.F., Ashrafi N., Ashrafi S. Optical communications using orbital angular momentum beams // Adv. Opt. Photon. 2015. V. 7. P. 66–106. DOI: 10.1364/AOP.7.000066.
36. Li C., Zhao S. Efficient separating orbital angular momentum with radial varying phase // Photon. Res. 2017. V. 5, N 4. P. 267–270. DOI: 10.1364/PRJ.5.000267.
37. Wang B., Wen Y., Zhu J., Chen Y., Yu S. Sorting full angular momentum states with Pancharatnam-Berry metasurfaces based on spiral transformation // Opt. Express. 2020. V. 28, N 11. P. 16342–16351. DOI: 10.1364 /OE.393859.
38. Anguita J.A., Neifeld M.A., Vasic B.V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link // Appl. Opt. 2008. V. 47, N 13. P. 2414–2429. DOI: 10.1364/AO.47.002414.