To detect ecotoxicants in the atmosphere by absorption spectroscopy, it is necessary to know their spectroscopic parameters. The absorption spectra of chloroform in a gas phase in the 2-mm wavelength subranges, where spectroscopic data are absent, were measured using high resolution spectrometer with phase-switching. The experimental results were compared with theoretical estimates of the absorption rotational line central frequencies. After preliminary measurements in the 118.6–118.9 GHz subrange, their comparison with the literature data, and confirmation of the possibility of reliable detection of absorption lines in the spectrum, the absorption lines for CH35Cl3 in the ground and in excited vibrational states (ν3, 2ν3) in the 131 ÷ 132, 137 ÷ 139, 150 ÷ 152, and 156 ÷ 158 GHz spectral ranges have been revealed and identified. Presented results can be used for detection of CH35Cl3 in the atmosphere.
chlorine-containing atmospheric gas, chloroform, rotational spectrum, terahertz nonstationary spectroscopy
1. Kistenev Yu.V., Cuisset A., Romanovskii O.A., Zherdeva A.V. Issledovanie malyh gazovyh sostavlyayushchih na granitse «vodnaya poverxnost' – atmosfera» s ispol'zovaniem sredstv distantsionnogo i lokal'nogo lazernogo IK-gazoanaliza. Obzor // Optika atmosf. i okeana. 2022. V. 35, N 10. P. 799–810. DOI: 10.15372/AOO20221002; Kistenev Yu.V., Cuisset A., Romanovskii O.A., Zherdeva A.V. A study of trace atmospheric gases at the water – atmosphere interface using remote and local IR laser gas analysis: A review // Atmos. Ocean. Opt. 2022. V. 35, N 1. P. S17–S29.
2. Study finds chloroform emissions, on the rise in East Asia, could delay ozone recovery by up to eight years / Massachusetts Institute of Technology. 2018. URL: https://phys.org/news/2018-12-chloroform-emissions-east-asia-ozone.html (last access: 05.04.2025).
3. Locating and Estimating Air Emissions from Sources of Chloroform Report EPA-450/4-84-007c. U.S. Environmental Protection Agency. Office of Air and Radiation, 1984. 101 p.
4. Scientific Assessment of Stratospheric Ozone. WMO. 1989. N 20. 532 p. URL: https://library.wmo.int/doc_num.php?explnum_id=7300 (last access: 05.04.2025).
5. Scientific Assessment of Ozone Depletion. WMO. 1994. N 37. 532 p. URL: https://library.wmo.int/doc_num.php?explnum_id=10898 (last access: 05.04.2025).
6. Fang X., Park S., Saito T., Tunnicliffe R., Ganesan A.L., Rigby M., Li Sh., Yokouchi Y., Fraser P.J., Harth C.M., Krummel P.B., Mühle J., O’Doherty S., Salameh P.K., Simmonds P.G., Weiss R.F., Young D., Lunt M.F., Manning A.J., Gressent A., Prinn R.G. Rapid increase in ozone depleting chloroform emissions from China // Nat. Geosci. 2019. V. 12. P. 89–93. DOI: 10.1038/s41561-018-0278-2.
7. Aucott M.L., McCulloch A., Graedel T.E., Kleiman G., Midgley P., Yi-Fan Li. Anthropogenic emissions of trichloromethane (chloroform, CHCl3) and chlorodifiuoromethane (HCFC-22): Reactive Chlorine Emissions Inventory // J. Geophys. Res. 1999. V. 104, N D7. P. 8405–8415. DOI: 10.1029/1999JD900053.
8. Worton D.R., Sturges W.T., Schwander J., Mulvaney R., Barnola J-M., Chappellaz J. 20th century trends and budget implications of chloroform and related tri-and dihalomethanes inferred from firn air // Atmos. Chem. Phys. 2006. V. 6. P. 2847–2863. DOI: 10.5194 /acp-6-2847-2006.
9. Graedel T.E., Keene W.C. Tropospheric budget of reactive chlorine // Glob. Biogeochem. Cycl. 1995. V. 9, N 1. P. 47–77. DOI: 10.1029/94GB03103.
10. Borges J.T., Sparrapan R., Guimarães J.R., Eberlin M.N., August R. Chloroform formation by chlorination of aqueous algae suspensions: Online monitoring via membrane introduction mass spectrometry // J. Braz. Chem. Soc. 2008. V. 19, N 5. P. 950–955. DOI: 10.1590/S0103-50532008000500021.
11. Ivahnenko T., Barbash J.E. Chloroform in the hydrologic system – Sources, transport, fate, occurrence, and effects on human health and aquatic organisms // Scientific Investigations Report 2004-5137. 2004. 34 p. URL: https://pubs.usgs.gov/sir/2004/5137/sir20045137.pdf.
12. Zhang W., Jiao Yi., Zhu R., Rhew R.C., Sun B., Dai H. Chloroform (CHCl3) emissions from coastal Antarctic tundra // Geophys. Res. Lett. 2021. V. 48, N 18. P. e2021GL09381. DOI: 10.1029/2021GL093811.
13. Kistenev Yu.V., Cuisset A., Hindle F., Raspopin G.K., Vaks V.L., Domracheva E.G., Chernyaeva M.B., Karapuzikov A.I. Potential of compact sub-THz spectrometers based on cascaded frequency multiplication for local environmental monitoring // Radiophys. Quant. Electron. 2023. V. 65. P. 746–759. DOI: 10.1007/s11141-023-10254-y.
14. Colmont J.-M., Priem D., Drean P., Demaison J., Boggs J.E. Rotational spectra of the isotopic species of chloroform: Experimental and ab initio structures // J. Mol. Spectrosc. 1998. V. 191. P. 158–175. DOI: 10.1006/jmsp.1998.7623.
15. Ceausu-Velcescu A., Pracna P., Margules L., Predoi-Cross A. Rotational spectrum of chloroform, “grass-roots among the forest of trees”: The n2 = 1, n3 = 2, n5 = 1, and n6 = 3 vibrational states of CH35Cl3 // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 276. P. 107937. DOI: 10.1016/j.jqsrt.2021.107937.
16. Pickett H.M., Cohen E.A., Drouin B.J., Pearson J.C. Submillimeter, Millimeter, and Microwave Spectral Line Catalog. JPL Molecular Spectroscopy. May 2, 2003. California Institute of Technology. URL: https://docs.yandex.ru/docs/view?url=ya-mail%3A%2F%2F190558559233143439%2F1.2&name=catdoc.pdf&uid=259439430&nosw=1.
17. Endres C.P., Schlemmer S., Schilke P., Stutzki J., Müller H.S.P. The Cologne Database for Molecular Spectroscopy, CDMS // J. Mol. Spectrosc. 2016. V. 327. P. 95–104.
18. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander A.J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277 P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
19. Wolfe P.N. Microwave spectrum of chloroform // J. Chem. Phys. 1956. V. 25. P. 976–981. DOI: 10.1063/1.1743153.
20. Weber A. The pure rotational Raman spectrum of chloroform // J. Mol. Spectrosc. 1964. V. 14, N 1–4. P. 53–61. DOI: 10.1016/0022-2852(64)90099-2.
21. Carpenter J.H., Seo P.J., Whiffen D.H. The rotational spectrum of chloroform in its ground and excited vibrational states // J. Mol. Spectrosc. 1995. V. 170. P. 215–227. DOI: 10.1006/jmsp.1995.1066.
22. Margule`s L., Demaison J., Pracna P. Rotational spectrum in the n6 = 1 and n3 = 1 levels of chloroform // J. Mol. Struct. 2006. V. 795. P. 157–162.
23. Ceausu-Velcescu A., Manceron L., Beckers H., Ghesquiere P., Pracna P. High-resolution infrared and millimeter-wave spectroscopy of CH35Cl3: The n2 = n6 = 1 combination level // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 293. P. 108385. DOI: 10.1016/j.jqsrt.2022.108385.
24. Ceausu-Velcescu A., Manceron L., Beckers H., Ghesquiere P., Pracna P. Revised assignments of the ν4 = 1 vibrational level of CH35Cl3: The ν4 and ν4 - ν3 rovibrational bands with remarkable clustering effects // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 280. P. 108077. DOI: 10.1016/j.jqsrt.2022.108077.
25. Cazzoli G., Cotti G., Dore L. Millimeter and submillimeter-wave spectrum of CHCl3. Determination of the h3 splitting constant // Chem. Phys. Lett. 1993. V. 203, N 2–3. P. 227–231. DOI: 10.1016/0009-2614(93)85392-2.
26. Białkowska-Jaworska E., Kisiel Z., Pszczołkowski L. Nuclear quadrupole coupling in chloroform and calibration of ab initio calculations // J. Mol. Spectrosc. 2006. V. 238. P. 72–78. DOI: 10.1016/j.jms.2006. 04.011.
27. Vaks V.L., Anfertev V.A., Balakirev V.Yu., Basov S.A., Domracheva E.G., Illyuk A.V., Kupriyanov P.V., Pripolzin S.I., Chernyaeva M.B. High resolution terahertz spectroscopy for analytical applications // Phys. Usp. 2020. V. 63. P. 708–720. DOI: 10.3367/ufne.2019.07.038613.
28. Gordy W., Cook R.L. Techniques of Chemistry. Vol. XVIII. Microwave Molecular Spectra. New York: Wiley & Sons, 1984. 929 p.