Vol. 38, issue 08, article # 5

Lavrent'ev N. A., Akhlestin A. Yu., Privezentsev A. I., Fazliev A. Z. Quality of collections of experimental vibration-rotational energy levels and transitions of H2O molecule. 1. Quasi-empirical energy levels. // Optika Atmosfery i Okeana. 2025. V. 38. No. 08. P. 628-636. DOI: 10.15372/AOO20250805 [in Russian].
Copy the reference to clipboard
Abstract:

The article analyzes the quality of collections of experimental vibrational-rotational energy levels and transitions of the main isotopologue of the water molecule placed in the information system (IS) W@DIS. Software for automatic support of the quality of the collection of energy levels and transitions when loading new data sources was created. This software performs sequential double filtering using the latest version of empirical energy levels, as well as quasi-empirical energy levels. A brief description of the introduced quasi-empirical energy levels and their role in updating the quality of data is given. Statistical data on each of the collections are presented, subsets of collections suitable for decomposition of expert wave numbers and lower-level energies are distinguished.

Keywords:

empirical energy level, empirical wave number, quasi-empirical energy level, automatic construction of quasi-empirical energy level

Figures:
References:

1. Lavrentiev N.A., Makogon M.M., Fazliev A.Z. Sravnenie spektral'nyh massivov dannyh HITRAN i GEISA s uchetom ogranicheniya na opublikovanie spektral'nyh dannyh // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 279–292; Lavrentiev N.A., Makogon M.M., Fazliev A.Z. Comparison of the HITRAN and GEISA spectral databases taking into account the restriction on publication of spectral data // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 436–451.
2. Akhlestin A., Lavrentiev N., Kozodoev A., Kozodoeva E., Privezentsev A., Fazliev A. Improvement of the data quality assessment procedure in large collections of spectral data // CEUR Suppl. Proc. of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), Voronezh, Russia, October 13–16, 2020. V. 2790. P. 263–279.
3. Tennyson J., Bernath P.F., Brown L.R., Campargue A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Naumenko O.V., Polyansky O.L., Rothman L.S., Vandaele A.C., Zobov N.F., Al Derzi A.R., Fábri C., Fazliev A.Z., Furtenbacher T., Gordon I.E., Lodi L., Mizus I.I. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O // J. Quant. Spectros. Radiat. Transfer. 2013. V. 117. P. 29–58. DOI: 10.1016/j.jqsrt.2012.10.002.
4. Furtenbacher T., Tóbiás R., Tennyson J., Polyansky O.L., Császár A.G. W2020: A database of validated rovibrational experimental transitions and empirical energy levels of H216O // J. Phys. Chem. Ref. Data. 2020. V. 49. Art. 033101. DOI: 10.1063/5.0008253.
5. Furtenbacher T., Tóbiás R., Tennyson J., Polyansky O.L., Kyuberis A.A., Ovsyannikov R.I., Zobov N.F., Császár A.G. W2020: A database of validated rovibrational experimental transitions and empirical energy levels. Part II. H217O and H218O with an update to H216O // J. Phys. Chem. Ref. Data. 2020. V. 49. Art. 043103. DOI: 10.1063/5.0030680.
6. Furtenbacher T., Tóbiás R., Tennyson J., Gamache R.R., Császár A.G., The W2024 database of the water isotopologue H216O // Scientific Data. 2024. V. 11. P. 1–15. DOI: 10.1038/s41597-024-03847-3.
7. Gil Y., Artz D. Towards content trust of web resources // Web Semantics: Science, Services and Agents on the World Wide Web. 2007. V. 5, N 4. P. 227–239. DOI: 10.1016/j.websem.2007.09.005.
8. Bachmann R., Zaheer A. Handbook of Trust Research. 2008. P. 437. ISBN: 1847207960.
9. Bykov A.D., Naumenko O.V., Sinitsa L.N., Rodimova O.B., Tvorogov S.D., Tonkov M.V., Fazliev A.Z., Filippov N.N. Informatsionnye aspekty molekulyarnoi spektroskopii. Tomsk: Izd-vo IOA SO RAN, 2008. 356 p.
10. Benedict W.S. Comments on the spectra of telluric H2O and CO2 as observed in the solar spectrum, 2.8–23.7 microns // Mem. Soc. Sci. Liege, Spec. 1957. V. 2. P. 18–30.
11. Vasilenko I.A., Sinitza L.N., Serdukov V.I. Svetodiodnaya Fur'e-spektroskopiya Н216О v diapazone 14800–15500 cm-1 // Optika atmosf. i okeana. 2024. V. 37, N 3. P. 196–202. DOI: 10.15372/AOO20240302; Vasilenko I.A., Sinitza L.N., Serdukov V.I. LED Fourier spectroscopy of H216O in the 14 800–15 500 cm-1 spectral region // Atmos. Ocean. Opt. 2024. V. 37, N 3. P. 302–308.
12. Polyansky O.L., Zobov N.F., Vitia S., Tennyson J., Bernath P.F., Wallace L. High-temperature rotational transitions of water in sunspot and laboratory spectra // J. Mol. Spectrosc. 1997. V. 186, N 2. P. 422–447. DOI: 10.1006/jmsp.1997.7449.
13. Tennyson J., Zobov N.F., Williamson R., Polyansky O.L., Bernath P.F. Experimental energy levels of the water molecule // J. Phys. Chem. Reference Data. 2001. V. 30, N 3. P. 735–831. DOI: 10.1063/1.1364517.
14. Tan Yan, Mikhailenko S.N., Wang Jin, Liu An-Wen, Zhao Xiao-Qin, Liu Gu-Liang, Hu Shui-Ming. CRDS absorption spectrum of 17O enriched water vapor in the 12.277–12.894 cm-1 range // J. Quant. Spectros. Radiat. Transfer. 2018. V. 221. P. 233–242. DOI: 10.1016/j.jqsrt.2018.10.009.
15. Liu A.-W., Liu G.-L., Zhao X.-Q., Wang J., Tan Y., Hu S.-M. Cavity ring-down spectroscopy of 17O-enriched water vapor between 12,055 and 12,260 cm-1 // J. Quant. Spectros. Radiat. Transfer. 2019. V. 239. Art. 106651. DOI: 10.1016/j.jqsrt.2019.106651.
16. Rao K.N., Brim W.W., Sinnett V.L., Wilson R.H. Wavelength calibrations in the infrared. IV. Use of a 1000-lines-per-inch bausch and lomb plane replica grating // J. Opt. Soc. Am. 1962. V. 52, N 8. P. 862–865. DOI: 10.1364/JOSA.52.000862.
17. Karlovets E.V., Mikhailenko S.N., Koroleva A.O., Campargue A. Water vapor absorption spectroscopy and validation tests of databases in the far-infrared (50–720 cm-1). Part 2: H217O and HD17O // J. Quant. Spectros. Radiat. Transfer. 2024. V. 314. Art. 108829. DOI: 10.1016/j.jqsrt.2023.108829.
18. Camy-Peyret C., Flaud J.-M., Mandin J.-Y., Chevillard J.P., Brault J., Ramsay D.A., Vervloet M., Chauville J. The high-resolution spectrum of water vapor between 16500 and 25250 cm-1 // J. Mol. Spectrosc. 1985. V. 113, N 1. P. 208–228. DOI: 10.1016/0022-2852(85)90131-6.
19. Koroleva A.O., Mikhailenko S.N., Kassi S. Campargue A. Frequency comb-referenced cavity ring-down spectroscopy of natural water between 8041 and 8633 cm-1 // J. Quant. Spectros. Radiat. Transfer. 2023. V. 298. Art. 108489. DOI: 10.1016/j.jqsrt.2023.108489.
20. Mandin J.-Y., Chevillard J.-P., Camy-Peyret C., Flaud J.-M., Brault J.W. The high-resolution spectrum of water vapor between 13200 and 16500 cm-1 // J. Mol. Spectrosc. 1986. V. 116, N 1. P. 167–190. DOI: 10.1016/0022-2852(86)90261-4.
21. Zobov N.F., Polyansky O.L., Tennyson J., Shirin S.V., Nassar R., Hirao T., Imajo T., Bernath P.F., Wallace L. Using laboratory spectroscopy to identify lines in the K- and L-band spectrum of water in a sunspot // Astrophys. J. 2000. V. 530. P. 994–998. DOI: 10.1086/308419.
22. Tolchenov R.N., Naumenko O., Zobov N.F., Shirin S.V., Polyansky O.L., Tennyson J., Carleer M., Coheur P.-F., Fally S., Jenouvrier A., Vandaele A.C. Water vapour line assignments in the 9250–26000 cm-1 frequency range // J. Mol. Spectrosc. 2005. V. 233, N 1. P. 68–76. DOI: 10.1016/j.jms.2005.05.015.
23. Zobov N.F., Ovsannikov R.I., Shirin S.V., Polyansky O.L., Tennyson J., Jankac A., Bernath P.F. Infrared emission spectrum of hot D2O // J. Mol. Spectrosc. 2006. V. 240, N 1. P. 112–119. DOI: 10.1016/j.jms.2006.09.007.
24. Zobov N.F., Shirin S.V., Polyansky O.L., Barber R.J., Tennyson J., Coheur P.-F., Bernath P.F., Carleer M., Colin R. Spectrum of hot water in the 2000–4750 cm-1 frequency range // J. Mol. Spectrosc. 2006. V. 237, N 1. P. 115–122. DOI: 10.1016/j.jms.2006.03.001.