The paper presents results of lidar monitoring of the atmosphere over Tomsk in winter 2023/24. The work studies the thermal regime of the middle atmosphere with emphasis on disturbances in the stratosphere caused by sudden stratospheric warmings (SSWs), including statistics on the vertical temperature distribution (VTD) for further analysis. During this period, 90 temperature profiles were calculated from lidar returns of molecular (Rayleigh) and spontaneous Raman scattering in the altitude range from 10 to 70 km. The annual cycle of the vertical temperature distribution is characterized by stratospheric warmings and their destruction in winter and spring, VDT stabilization in warm season, and VTD destabilization in fall with transition to winter SSW phase. In most cases, the vertical temperature distribution in April–October was in good agreement with the model distribution. It has been found that during two stratospheric warming events in winter 2023/24, a splitting of circumpolar vortices occurred at the time of their maximum manifestation (on December 13, 2023, and February 18, 2024). The results are particularly interesting for understanding climate change in Western Siberia.
middle atmosphere, aerosol, temperature, lidar
1. Rees D., Barnett J.J., Labitske K. COSPAR International reference atmosphere: 1986. Part II, Middle atmosphere models // Adv. Space Res. 1990. V. 10, N 12. 525 p.
2. NASA GESDISC DATA ARCHIVE. URL: http://mirador.gsfc.nasa.gov (data obrashcheniya: 12.03.2025).
3. Universitet Vaiominga. Kolledj injenerii i prikladnyx nauk. URL: http://weather.uwyo.edu/upperair/sounding.html (data obrashcheniya: 12.03.2025).
4. Earth NullSchool. URL: https://earth.nullschool.net/#2023/02/07/1900Z/wind/isobaric/10hPa/overlay= temp/orthographic=89.66%2C56.79%2C350/loc=84.948%2C56.485 (last access: 12.03.2025).
5. Matsuno T. A dynamical model of stratospheric sudden warming // J. Atmos. Sci. 1971. V. 28. P. 1479–1494. DOI: 10.1175/1520-0469(1971)028<1479:admots>2.0.co;2.
6. Pal S.R., Carswell A.I., Bird J., Donovan D.P., Duck T.J., Whiteway J.A. Lidar measurements of the stratosphere at the Eureka and Toronto NDSC stations // Proc. SPIE. 1996. V. 2833. P. 28–39.
7. Charney J.G., Drazin P.G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. 1961. V. 66, N 1. P. 83109. DOI: 10.1029/JZ066i001p00083.
8. Mohanakumar K. Stratosphere–Troposphere Interactions. An Introduction. New York: Springer-Verlag, 2008. 436 p.
9. Nishii K., Nakamura H. Tropospheric influence on Antarctic ozone hole split 2002 // Geophys. Res. Lett. 2004. V. 31. P. L16103. DOI: 10.1029/2004GL019532.
10. Peters D., Vargin P., Körnich H. A study of the zonally asymmetric tropospheric forcing of the austral vortex splitting during September 2002 // Tellus A. 2007. V. 59, N 3. P. 384–394. DOI: 10.1111/j.1600-0870.2007.00228.x.
11. Peters D., Vargin P., Gabriel A., Tsvetkova N., Yushkovet V. Tropospheric forcing of the boreal polar vortex splitting in January 2003 // Ann. Geophys. 2010. V. 28. P. 2133–2148. DOI: 10.5194/angeo-28-2133-2010.
12. Institute of Meteorology. URL: http://users.met.fu-berlin.de/~Aktuell/strat-www/wdiag (last access: 12.03.2025).
13. Marichev V.N. Lidarnye issledovaniya proyavleniya stratosfernyx poteplenii nad Tomskom v 2008–2010 years // Optika atmosf. i okeana. 2011. V. 24, N 5. P. 386–391.
14. Marichev V.N. Issledovanie osobennostei proyavleniya zimnix stratosfernyx poteplenii nad Tomskom po dannym lidarnyx izmerenii temperatury v 2010–2011 years // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1041–1046.
15. Marichev V.N. Analiz povedeniya plotnosti vozduxa i temperatury v stratosfere nad Tomskom v periody ee vozmushchennogo i spokoinogo sostoyanii, vypolnennyi po rezul'tatam lidarnyx izmerenii // Optika atmosf. i okeana. 2013. V. 26, N 9. P. 783–792.