Highly directional supercontinuum (HDSC) is a unique source of broadband coherent radiation. To create such a source, it is necessary to know the parameters and conditions of its occurrence. The article presents the results of experimental study of the conditions for HDSC generation in gaseous nitrogen pumped by a radiation pulse with wavelength of 950 nm, duration of 70 fs, and energy of 3–6 mJ. The pump radiation was focused into a gas chamber by a spherical mirror with F = 75 cm under aberration conditions (the angle of incidence of the radiation on the mirror was 15°). It is shown that there is optimal pump energy of 4.5 mJ and gas pressure of 3–4 atm. The spectral composition of the HDSC covers the range from 350 to 1000 nm. The divergence of HDSC radiation is diffraction-limited and its greatest value (the diameter of the white spot in the far zone) corresponds to a wavelength of 780 nm. The maximal HDSC energy was 17 μJ. The results are useful for understanding the physical mechanisms underlying the emergence of HDSC, as well as for developing broadband coherent radiation sources.
filament, supercontinuum, aberration focusing, radiation pulse, wavelength, divergence
1. Theberge F., Liu W., Luo Q., Chin S.L. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses // Appl. Phys. 2005. V. 80. P. 221–225. DOI: 10.1007/s00340-004-1689-x.
2. Béjot P., Bonacina L., Extermann J., Moret M., Wolf J.P., Ackermann R., Lascoux N., Salame R., Salmon E., Kasparian J., Berge L., Champeaux S., Guet C., Blanchot N., Bonville O., Boscheron A., Canal P., Castaldi M., Hartmann O., Lepage C., Marmande L., Mazataud E., Mennerat G., Patissou L., Prevot V., Raffestin D., Riboizi J. 32 terawatt atmospheric white-light laser // Appl. Phys. Lett. 2007. V. 90. P. 151106. DOI: 10.1038/375073a0.
3. Aközbek N., Trushin S.A., Baltŭska, Fuß A.W., Goulielmakis E., Kosma K., Krausz F., Panja S., Uiberacker M., Schmid W.E., Becker A., Scalora M., Bloemer M. Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses // New J. Phys. 2006. V. 8, N 177. P. 25619-2. DOI: 10.1088/1367-2630/8/9/177.
4. Geints Y.E., Zemlyanov A.A. Self-focusing of a focused femtosecond laser pulse in air // App. Phys. B. 2010. V. 101, N 4. P. 735–742. DOI: 10.1007/s00340-010-4098-3.
5. Geints Y.E., Bulygin A.D., Zemlyanov A.A. Model description of intense ultra-short laser pulse filamentation: Multiple foci and diffraction rays // Appl. Phys. B. 2012. V. 107, N 1. P. 243–255. DOI: 10.1007/s00340-011-4765-z.
6. Gejnts Yu.E., Zemlyanov A.A., Ionin A.A., Mokrousova D.V., Seleznev L.V., Sinitsyn D.V., Sunchugasheva E.S. Postfilamentatsionnoe rasprostranenie moshchnykh lazernykh impul'sov v vozdukhe v rezhime uzkonapravlennykh svetovykh kanalov // Kvant. elektron. 2016. V. 46, N 11. P. 1009–1014. DOI: 10.1070/QEL16154.
7. Kompanets V.O., Arkhipova A.A., Mel'nikov A.A., Chekalin S.V. Upravlenie femtosekundnoj filamentatsiej posredstvom vystraivaniya molekul gaza lazernymi impul'sami korotkovolnovogo IK-diapazona // Pis'ma v ZhETF. 2022. V. 116, is. 4. P. 217–224. DOI: 10.31857/S1234567822160054.
8. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75. DOI: 10.1364/OL.20.000073.
9. Wille H., Rodriguez M., Kasparian J., Mondelain D., Yu J., Mysyrowicz A., Sauerbrey R., Wolf J.P., Wöste L. Teramobile: A mobile femtosecond-terawatt laser and detection system // Europ. Phys. J. Appl. Phys. 2002. V. 20. P. 183–190. DOI: 10.1051/epjap:2002090.
10. Kasparian J., Rodriguez M., Méjean G., Yu J., Salmon E., Wille H., Bourayou R., Frey S., André Y.-B., Mysyrowicz A., Sauerbrey R., Wolf J.-P., Wöste L. White-light filaments for atmospheric analysis // Science. 2003. V. 301. P. 61–64. DOI: 10.1126/science.1085020.
11. Kamali Y., Sun Q., Daigle J.-F., Azarm A., Bernhardt J., Chin S.L. Lens tilting effect on filamentation and filament-induced fluorescence // Opt. Commun. 2009. V. 282. P. 950–954. DOI: 10.1117/12.921634.
12. Alonso B., Borrego-Varillas R., Sola Íñigo J., Varela Ó., Villamarín A., Collados M.V., San Román J., Bueno J.M., Roso L. Enhancement of filamentation postcompression by astigmatic focusing // Opt. Lett. 2011. V. 36, N 19. P. 3867–3868. DOI: 10.1364/OL.36.003867.
13. Dergachev A.A., Ionin A.A., Kandidov V.P., Mokrousova D.V., Seleznev L.V., Sinitsyn D.V., Sunchugasheva E.S., Shlenov S.A., Shustikova A.P. Plazmennye kanaly pri filamentatsii v vozdukhe femtosekundnogo lazernogo izlucheniya s astigmatizmom volnovogo fronta // Kvant. elektron. 2014. V. 44, N 12. P. 1085–1093. DOI: 10.1070/QE2014v044n12ABEH015472.
14. Xu Z., Zhu X., Yu Y., Zhang N., Zhao J. Super-luminescent jet light generated by femtosecond laser pulses // Sci. Report. 2014. V. 4. P. 3892. DOI: 10.1038/srep03892.
15. Ivanov N.G., Losev V.F. Vliyanie kerrovskoj nelinejnosti na filamentatsiyu femtosekundnogo impul'sa izlucheniya v vozdukhe // Optika atmosf. i okeana. 2017. V. 30, N 3. P. 198–203. DOI: 10.15372/AOO20170302; Ivanov N.G., Losev V.F. Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 331–336.
16. Ivanov N.G., Losev V.F., Prokop’ev V.E., Sitnik K.A. Generation of a highly directional supercontinuum in the visible spectrum range // Opt. Commun. 2017. V. 387. P. 322–327. DOI: 10.1016/j.optcom.2016.11.057.
17. Prokop'ev V.E., Lubenko D.M., Losev V.F. Issledovanie prostranstvennoj struktury femtosekundnogo lazernogo puchka v oblasti filamenta pri ego aberratsionnoj fokusirovke v vozdukhe // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 685–689. DOI: 10.15372/AOO20200904.
18. Prokop'ev V.E., Lubenko D.M. Transformatsiya spektral'nykh kharakteristik femtosekundnogo lazernogo impul'sa pri rasprostranenii v atmosfere // Optika atmosf. i okeana. 2024. V. 37, N 8. P. 648–652. DOI: 10.15372/AOO20240804; Prokop’ev V.E., Lubenko D.M. Femtosecond laser pulse spectrum transformation during propagation in the atmosphere // Atmos. Ocean. Opt. 2024. V. 37, N 6. P. 766–770.