Water vapor is a significant component of the Earth's atmosphere. Assessing the contribution of water vapor to the Earth's radiation balance has remained a topical issue for decades. In this work, the water vapor self- and foreign-continuum spectra have been retrieved at temperatures of 310, 325, and 340 K in the 1600 cm-1 absorption band for the first time based on earlier Fourier-measurements of water vapor absorption under self-broadening and broadening by air at 296–340 K within this absorption band with the use of HITRAN2020 spectroscopic database. The retrieved spectra show characteristic for self- and foreign-continuum spectral and temperature dependences. The spectra we retrieved are compared with the MT_CKD semi-empirical continuum model and the semi-empirical dimer-based continuum model (Simonova A.A., Ptashnik I.V., Shine K.P. Semi-empirical water dimer model of the water vapour self-continuum within the IR absorption bands // J. Quant. Spectrosc. Radiat. Transfer. 2024. V. 329. P. 109198-1–19. DOI: 10.1016/j.jqsrt.2024.109198). The results are important from both fundamental, within the molecular spectroscopy, and practical point of view, in problems of atmospheric modeling and remote sensing.
continuum absorption, water vapor, foreign-continuum, self-continuum, spectral parameters, Fourier-transform spectroscopy, absorption bans, water dimer, temperature dependence
1. Mlawer E.J., Payne V.H., Moncet J.L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT-CKD model of continuum absorption // Phill. Trans. Roy. Soc. A. 2012. V. 370. P. 2520–2556. DOI: 10.1098/rsta.2011.0295.
2. Hettner G. Über das ultrarote Absorptionsspektrum des Wasserdampfes // Ann. Phys. 1918. V. 360. P. 476–496. DOI: 10.1002/andp.19183600603.
3. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33, N 3–4. P. 535–555. DOI: 10.1007/s10712-011-9170-y.
4. Odintsova T.A., Koroleva A.O., Simonova A.A., Campargue A., Tretyakov M.Y. The atmospheric continuum in the “terahertz gap” region (15–700 cm-1): Review of experiments at SOLEIL synchrotron and modeling // J. Mol. Spectrosc. 2022. V. 386. P. 111603-1–10. DOI: 10.1016/j.jms.2022.111603.
5. Simonova A.A., Ptashnik I.V., Elsey J., McPheat R.A., Shine K.P., Smith K.M. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277, N 107957. P. 107957-1–17. DOI: 10.1016/j.jqsrt.2021. 107957.
6. Vigasin A.A. Bimolecular absorption in atmospheric gases // Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere: The Advanced Research Workshop. 2003. P. 23–48. DOI: 10.1007/978-94-010-0025-3_2.
7. Mukhopadhyay A., Cole W.T.S., Saykally R.J. The water dimer. I: Experimental characterization // Chem. Phys. Lett. 2015. V. 633. P. 13–26. DOI: 10.1016/j.cplett.2015.04.016.
8. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 K and 351 K // J. Geophys. Res.: Atmos. 2009. V. 114. P. D21301-1–23. DOI: 10.1029/2008JD011355.
9. Newman S.M., Green P.D., Ptashnik I.V., Gardiner T.D., Coleman M.D., McPheat R.A., Smith K.M. Airborne and satellite remote sensing of the mid-infrared water vapour continuum // Phill. Trans. Roy. Soc. A. 2012. V. 370. P. 2611–2636. DOI: 10.1098/rsta.2011.0223.
10. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
11. Ptashnik I.V., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228. P. 97–105. DOI: 10.1016/j.jqsrt.2019.02.024.
12. Klimeshina T.E., Ptashnik I.V. Programmnyi kod dlya vosstanovleniya kontinual'nogo pogloshcheniya vodyanogo para iz eksperimental'nykh dannykh // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 335–340. DOI: 10.15372/AOO20180501; Klimeshina T.E., Ptashnik I.V. Software for retrieving the water vapor continuum absorption from experimental data // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 451–456.
13. Mlawer E.J., Cady-Pereira K.E., Mascio J., Gordon I.E. The inclusion of the MT_CKD water vapor continuum model in the HITRAN molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2023. V. 306. P. 108645. DOI: 10.1016/j.jqsrt.2023.108645.
14. Simonova A.A., Ptashnik I.V., Shine K.P. Semi-empirical water dimer model of the water vapour self-continuum within the IR absorption bands // J. Quant. Spectrosc. Radiat. Transfer. 2024. V. 329, N 109198. P. 109198-1–19. DOI: 10.1016/j.jqsrt.2024.109198.
15. Burch D.E. Continuum absorption by atmospheric H2O // Proc. SPIE. 1981. V. 277. P. 28–39. DOI: 10.1117/12.931899.
16. Tobin D.C., Strow L.L., Lafferty W.J., Olson W.B. Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor // Appl. Opt. 1996. V. 35, N 24. P. 4724. DOI: 10.1364/ao.35.004724.
17. What’s New. 2024. URL: https://github.com/AER-RC/MT_CKD_H2O/wiki/What’s-New (last access: 23.05.2025).
18. Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112, N 18. P. 4324–4335. DOI: 10.1021/jp710066f.
19. Salmi T., Hänninen V., Garden A.L., Kjaergaard H.G., Tennyson J., Halonen L. Calculation of the O–H stretching vibrational overtone spectrum of the water dimer // J. Phys. Chem. A. 2008. V. 112, N 28. P. 6305–6312. DOI: 10.1021/jp800754y.
20. Salmi T., Hänninen V., Garden A.L., Kjaergaard H.G., Tennyson J., Halonen L. Correction to “Calculation of the O–H stretching vibrational overtone spectrum of the water dimer” // J. Phys. Chem. A. 2012. V. 116, N 1. P. 796–797. DOI: 10.1021/jp210675h.
21. Gordon I., Rothman L., Gamache R., Jacquemart D., Boone C., Bernath P., Shephard M., Delamere J., Clough S. Current updates of the water-vapor line list in HITRAN: A new “Diet” for air-broadened half-widths // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 108, N 3. P. 389–402. DOI: 10.1016/j.jqsrt.2007.06.009.
22. Rowe P., Walden V. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at -30 °C // Appl. Opt. 2009. V. 48, N 7/1. P. 1358–1365. DOI: 10.1364/AO.48.001358.
23. Rowe P.M., Walden V.P., Warren S.G. Measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at -30°°C // Appl. Opt. 2006. V. 45, N 18. P. 4366–4382. DOI: 10.1364/AO.45.004366.