Vol. 38, issue 11, article # 11

Kuznetsov V. S., Zinoviev M. M., Yudin N. N., Romanovskii O. A., Nevzorov A. A., Yakovlev S. V., Sadovnikov S. A., Khudoley A. L., Vlasov D. V. Dielectric mirror with high reflectance at 266 nm wavelength for ozone lidar. // Optika Atmosfery i Okeana. 2025. V. 38. No. 11. P. 957–962. DOI: 10.15372/AOO20251111 [in Russian].
Copy the reference to clipboard
Abstract:

A dielectric mirror with high reflectance at a wavelength of 266 nm has been designed for use in ultraviolet lidar systems for ozone concentration monitoring. A multilayer interference coating based on HfO2 and SiO2 was manufactured and optimized using experimentally obtained dispersion data. The effect of thermal annealing on the optical properties of the coating was investigated, and a temperature limit was identified, excess of which leads to structural degradation. The results can be used in the design of highly efficient optical elements for ultraviolet differential absorption lidars, as well as other laser systems which require UV dielectric mirrors.

Keywords:

dielectric mirror, ion beam spultering, UV coating, ozone lidar, interference coating

References:

1. Qian Y., Wang D., Li Z., Yan G., Zhao M., Zhou H., Si F., Luo Y. Ground-based MAX-DOAS observations of tropospheric ozone and its precursors for diagnosing ozone formation sensitivity // Remote Sens. 2025. V. 17. P. 658. DOI: 10.3390/rs17040658.
2. Elshorbany Y., Ziemke J., Strode S., Petetin H., Miyazaki K., De Smedt I., Pickering K., Seguel R., Worden H., Emmerichs T., Taraborrelli D., Cazorla M., Fadnavis S., Buchholz R., Gaubert B., Rojas N., Nogueira T., Salameh T., Huang M. Tropospheric ozone precursors: Global and regional distributions, trends and variability // EGUsphere. Preprint: community platform. 2024. DOI: 10.5194/egusphere-2024-720.
3. Newchurch M.J., Kuang S., Leblanc T., Alvarez R.J., Langford A.O., Senff C.J., Burris J.F., McGee T.J., Sullivan J.T., DeYoung R.J., Al-Saadi J., Johnson M., Pszenny A. TOLNET – a tropospheric ozone lidar profiling network for satellite continuity and process studies // EPJ Web Conf. 2016. V. 119. 20001. DOI: 10.1051/epjconf/201611920001.
4. Macleod H.A. Thin-Film Optical Filters. 5th ed. CRC Press, 2010.
5. Browell E., Ismail S., Grant W. Differential absorption lidar (DIAL) measurements from air and space // Appl. Phys. B. 1998. V. 67. P. 399–410. DOI: 10.1007/s003400050523.
6. Seabrook J., Whiteway J., Gray L.H., Staebler R., Herber A. Airborne lidar measurements of surface ozone depletion over Arctic sea ice // Atmos. Chem. Phys. 2013. V. 13, iss. 12. P. 6023–6029. DOI: 10.5194/acp-13-6023-2013.
7. Romanovskii O.A., Yakovlev S.V., Sadovnikov S.A., Nevzorov A.A., Nevzorov A.V., Kharchenko O.V., Kravtsova N.S., Kistenev Yu.V. Nazemnye statsionarnye lidary differentsial'nogo pogloshcheniya dlya monitoringa parnikovykh gazov v atmosfere // Optika atmosf. i okeana. 2025. V. 38, N 1. P. 72–84. DOI: 10.15372/AOO20250109; Romanovskii O.A., Yakovlev S.V., Sadovnikov S.A., Nevzorov A.A., Nevzorov A.V., Kharchenko O.V., Kravtsova N.S., Kistenev Yu.V. Ground-based stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere // Atmos. Ocean. Opt. 2025. V. 38, N 3. P. 345–359.
8. Romanovskii O.A., Kistenev Yu.V., Yakovlev S.V., Nevzorov A.A., Nevzorov A.V., Sadovnikov S.A., Kharchenko O.V. Mobile ground-based differential absorption lidar systems for atmospheric greenhouse gas sensing: A review // Appl. Spectros. Rev. 2025. V. 60. DOI: 10.1080/05704928.2025.2508822.
9. Nevzorov A.A., Nevzorov A.V., Kravtsova N.S., Kharchenko O.V., Romanovskii Ya.O. Mobil'nyi lidar dlya zondirovaniya troposfernogo ozona // Optika atmosf. i okeana. 2023. V. 36, N 5. P. 410–416. DOI: 10.15372/AOO20230512; Nevzorov A.A., Nevzorov A.V., Kravtsova N.S., Kharchenko O.V., Romanovskii Ya.O. Mobile lidar for sensing tropospheric ozone // Atmos. Ocean. Opt. 2023. V. 36, N 5. P. 562.
10. Pan L., Zhang T., Sun X., Fan G., Xiang Y., Fu Y., Dong Y. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source // Opt. Express. 2020. V. 28. P. 13786–13800. DOI: 10.1364/OE.391333.
11. Handbook of Optics: Volume IV – Optical Properties of Materials, Nonlinear Optics, Quantum Optics / M. Bass (ed.). New York: McGraw-Hill Professional, 2010. 1232 p
12. Nakazato M., Nagai T., Sakai T., Hirose Y. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide // Appl. Opt. 2007. V. 46. P. 2269–2279. DOI: 10.1364/AO.46.002269.
13. Sullivan J.T., McGee T., Sumnicht G., Twigg L., Hoff R. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region // Atmos. Meas. Tech. 2014. V. 7. P. 3529–3548. DOI: 10.5194/amt-7-3529-2014.
14. Pulker H.K. Coatings on Glass. Amsterdam: Elsevier, 1999. 452 p.
15. Smith W.J. Modern Optical Engineering: The Design of Optical Systems. New York: McGraw-Hill, 2008. 599 p.
16. Gawlitza P., Braun S., Dietrich G., Menzel M., Schädlich S., Leson A. Ion beam sputtering of X-ray multilayer mirrors // Proc. SPIE. 2008. V. 7077. DOI: 10.1117/12.796830.
17. Bischoff M., Nowitzki T., Voß O., Wilbrandt S., Stenzel O. Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties // Appl. Opt. 2014. V. 53, N 4. P. A212–A220. DOI: 10.1364/AO.53.00A212.
18. Falmbigl M., Godin K., George J., Mühlig C., Rubin B. Effect of annealing on properties and performance of HfO2/SiO2 optical coatings for UV-applications // Opt. Express. 2022. V. 30. P. 12326–12336. DOI: 10.1364/OE.453345.
19. Trubetskov M., Tikhonravov A., Amotchkina T. Reverse engineering of optical coatings: Problem definition and application examples // Appl. Opt. 2014. V. 53. P. A13–A22. DOI: 10.1364/AO.53.00A114.
20. Zhao M., Wang Y., Lu Y., Chen Y., Shao J. Effect of annealing on ion-beam-sputtered hafnium oxide thin films properties // Opt. Mater. 2024. V. 157. Art. 116241. DOI: 10.1016/j.optmat.2024.116241.
21. Liu H., Jiang Y., Wang L., Li S., Yang X., Jiang C., Liu D., Ji Y., Zhang F., Chen D. Effect of heat treatment on properties of HfO2 film deposited by ion-beam sputtering // Opt. Mater. 2017. V. 73. P. 95–101. DOI: 10.1016/j.optmat.2017.07.048.