Stratospheric polar vortices, which form over the polar regions in late autumn, are large-scale cyclonic formations whose stability in the winter-spring period determines the scale and depth of spring ozone depletion. Using the vortex delineation method based on ERA5 reanalysis data, we studied the features in the vertical dynamics of the Arctic and Antarctic polar vortices in 2020 during their anomalous strengthening, which was accompanied by deep and prolonged ozone depletion in the Arctic and Antarctic. In particular, we examined the synchronicity in temporal changes at different stratospheric levels. The polar vortex breakdown in 2020 was observed from late spring to early summer spreading from top to bottom over 1‒2 months. The dynamics of the Arctic polar vortex showed three peaks of activity, spreading from the upper to the lower stratosphere within a month. The dynamics of the Antarctic polar vortex clearly showed one peak of activity spreading from the upper to the lower stratosphere over a period of 2 months. The anomalous duration of the western phase of the quasi-biennial oscillation in the middle stratosphere has been proposed as a possible reason for the unprecedented strengthening of the polar vortices in 2020. The results can be used to assess the risks of increasing ground-level UV-B radiation which is dangerous for the biosphere.
stratospheric polar vortex, ozone depletion event, quasi-biennial oscillation, vortex area, wind speed at vortex edge
1. Manney G.L., Zurek R.W., O’Neill A., Swinbank R. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51, N 20. P. 2973–2994. DOI: 10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2.
2. Schoeberl M.R., Lait L.R., Newman P.A., Rosenfield J.E. The structure of the polar vortex // J. Geophys. Res. 1992. V. 97, N D8. P. 7859–7882. DOI: 10.1029/91JD02168.
3. Zuev V.V., Savel'eva E.S., Maslennikova E.A., Tomashova A.S., Krupchatnikov V.N., Chkhetiani O.G., Kalashnik M.V. Posledstviya oslableniya dinamicheskogo bar'era arkticheskogo polyarnogo vikhrya // Dokl. RAN. Nauki o Zemle. 2024. V. 514, N 2. P. 333–342. DOI: 10.31857/S2686739724020183.
4. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Am. Meteorol. Soc. 2017. V. 98, N 1. P. 37–44. DOI: 10.1175/BAMS-D-15-00212.1.
5. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. AGU, 2010. P. 43–57. DOI: 10.1002/9781118666630.ch3.
6. Newman P.A., Nash E.R., Rosenfield J.E. What controls the temperature of the Arctic stratosphere during the spring? // J. Geophys. Res. 2001. V. 106, N 17. P. 19999–20010. DOI: 10.1029/2000JD000061.
7. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316. DOI: 10.1029/1999RG900008.
8. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // The Stratosphere: Dynamics, Transport, and Chemistry. AGU, 2010. P. 157–171. DOI: 10.1029/2009GM000873.
9. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p. DOI: 10.1016/B978-0-12-257060-5.X5000-X.
10. Luk'yanov A.N., Vargin P.N., Yushkov V.A. Issledovanie s pomoshch'yu lagranjevykh metodov anomal'no ustoichivogo arkticheskogo stratosfernogo vikhrya, nablyudavshegosya zimoi 2019–2020 years // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 3. P. 278–285. DOI: 10.31857/S000235152103007X.
11. Lawrence Z.D., Perlwitz J., Butler A.H., Manney G.L., Newman P.A., Lee S.H., Nash E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss // J. Geophys. Res. 2020. V. 125, N 22. P. e2020JD033271. DOI: 10.1029/2020JD033271.
12. Grooß J.-U., Müller R. Simulation of record Arctic stratospheric ozone depletion in 2020 // J. Geophys. Res. 2021. V. 126, N 12. P. e2020JD033339. DOI: 10.1029/2020JD033339.
13. Kuttippurath J., Feng W., Müller R., Kumar P., Raj S., Gopikrishnan G.P., Roy R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 // Atmos. Chem. Phys. 2021. V. 21, N 18. P. 14019–14037. DOI: 10.5194/acp-21-14019-2021.
14. Wohltmann I., von der Gathen P., Lehmann R., Maturilli M., Deckelmann H., Manney G.L., Davies J., Tarasick D., Jepsen N., Kivi R., Lyall N., Rex M. Near-Complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020 // Geophys. Res. Lett. 2020. V. 47, N 20. P. e2020GL089547. DOI: 10.1029/2020GL089547.
15. Zuev V.V., Savel'eva E.S., Pavlinskii A.V. Bespretsedentnaya ozonovaya anomaliya v arkticheskoi stratosfere v zimne-vesennii period 2020 year // DAN. Nauki o Zemle. 2020. V. 495, N 2. P. 36–40. DOI: 10.31857/S2686739720120130.
16. Klekociuk A.R., Tully M.B., Krummel P.B., Henderson S.I., Smale D., Querel R., Nichol S., Alexander S.P., Fraser P.J., Nedoluha G. The Antarctic ozone hole during 2020 // J. South. Hemisph. Earth Syst. Sci. 2021. V. 72, N 1. P. 19–37. DOI: 10.1071/ES21015.
17. Yook S., Thompson D.W.J., Solomon S. Climate impacts and potential drivers of the unprecedented Antarctic ozone holes of 2020 and 2021 // Geophys. Res. Lett. 2022. V. 49, N 10. P. e2022GL098064. DOI: 10.1029/2022GL098064.
18. Zuev V.V., Savel'eva E.S., Pavlinskii A.V., Sidorovskii E.A. Bespretsedentnaya prodoljitel'nost' antarkticheskoi ozonovoi anomalii 2020 year // Dokl. RAN. Nauki o Zemle. 2023. V. 509, N 1. P. 120–124. DOI: 10.31857/S2686739722602319.
19. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. Roy. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
20. Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method // J. Earth Syst. Sci. 2023. V. 132, N 1. P. 39. DOI: 10.1007/s12040-023-02060-x.
21. Zuev V.V., Savel'eva E.S. Dinamicheskie kharakteristiki stratosfernykh polyarnykh vikhrei // Dokl. RAN. Nauki o Zemle. 2024. V. 517, N 1. P. 830–840. DOI: 10.31857/S2686739724070173.
22. Waugh D.W., Randel W.J., Pawson S., Newman P.A., Nash E.R. Persistence of the lower stratospheric polar vortices // J. Geophys. Res. 1999. V. 104, N 22. P. 27191–27201. DOI: 10.1029/1999JD900795.
23. Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The quasi-biennial oscillation // Rev. Geophys. 2001. V. 39, N 2. P. 179–229. DOI: 10.1029/1999RG000073.
24. Holton J.R., Tan H.C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb // J. Atmos. Sci. 1980. V. 37, N 10. P. 2200–2208. DOI: 10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.
25. Garfinkel C.I., Shaw T.A., Hartmann D.L., Waugh D.W. Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? // J. Atmos. Sci. 2012. V. 69, N 5. P. 1713–1733. DOI: 10.1175/JAS-D-11-0209.1.
26. Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods // J. Atmos. Sol.-Terr. Phys. 2019. V. 190. P. 1–5. DOI: 10.1016/j.jastp.2019.04.016.
27. Chen W., Wei K. Interannual variability of the winter stratospheric polar vortex in the Northern Hemisphere and their relations to QBO and ENSO // Adv. Atmos. Sci. 2009. V. 26, N 5. P. 855–863. DOI: 10.1007/s00376-009-8168-6.
28. Calvo N., Giorgetta M.A., Peña-Ortiz C. Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations // J. Geophys. Res. 2007. V. 112, N 10. P. D10124. DOI: 10.1029/2006JD007844.
29. Niwano M., Takahashi M. The influence of the equatorial QBO on the Northern Hemisphere winter circulation of a GCM // J. Meteorol. Soc. Jpn. 1998. V. 76, N 3. P. 453–461. DOI: 10.2151/jmsj1965.76. 3_453.
30. Garfinkel C.I., Hartmann D.L. Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere // J. Geophys. Res. 2007. V. 112, N 19. P. D19112. DOI: 10.1029/2007JD008481.
31. Klekociuk A.R., Tully M.B., Alexander S.P., Dargaville R.J., Deschamps L.L., Fraser P.J., Gies H.P., Henderson S.I., Javorniczky J., Krummel P.B., Petelina S.V., Shanklin J.D., Siddaway J.M., Stone K.A. The Antarctic ozone hole during 2010 // Aust. Meteorol. Ocean. 2011. V. 61, N 4. P. 253–267. DOI: 10.1071/ES11025.
32. Haigh J.D., Roscoe H.K. The final warming date of the Antarctic polar vortex and influences on its interannual variability // J. Climate. 2009. V. 22, N 22. P. 5809–5819. DOI: 10.1175/2009JCLI2865.1.