The objective of this study was to determine an optimal radiation wavelength for scanning marine surface from air, which provides minimal radiation absorption, parasitic fluorescence, beam divergence, and scattering in the water column. These parameters depend on the probing laser type used. The research focused on water samples from the Black Sea collected 200 m from the shore immediately before the experiment and water samples stored for one year in light-protected hermetically sealed containers. For both sets of samples, the following were examined: scattering phase function, spectral transmission coefficients, laser beam divergence, particle size distribution of organic matter in the samples, and its effect on fluorescence spectra. Commercial semiconductor lasers with wavelengths of 450, 520, and 660 nm were used. The study shows a 450-nm laser to be optimal for underwater probing tasks since it exhibits the lowest radiation attenuation in the water column (0.5 dB/m), the smallest scattering spot, and minimal fluorescence. Organic particles do not significantly affect hydro-optical properties of seawater in the samples both immediately collected before the experiment and stored for one year. The results can be used in the design of above-water and underwater laser probing systems for marine surface analysis.
seawater, Black Sea, light scattering, laser probing of water surface
1. Hao Y., Yuan Y., Zhang H., Zhang Z. Underwater optical imaging: Methods // Appl. Perspect. Remote Sens. 2024. V. 16. P. 3773. DOI: 10.3390/rs16203773.
2. Chen Y., Guo S., He Y., Luo Y., Chen W., Hu S., Huang Y., Hou C., Su S. Simulation and design of an underwater lidar system using non-coaxial optics and multiple detection channels // Remote Sens. 2023. V. 15. P. 3618. DOI: 10.3390/rs15143618.
3. Sterlyadkin V.V., Kulikovskii K.V., Badulin S.I. Naturnye izmereniya formy morskoi poverxnosti i odnomernogo prostranstvennogo spektra volneniya // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2024. V. 21, N 1. P. 270–285.
4. Sterlyadkin V.V. The problem of reconstructing the profile of the sea surface from the video image of laser beams // Oceanology. 2024. V. 64, N 3. P. 342–352. DOI: 10.31857/S0030157424030022.
5. Shuleikin V.V. Kratkii kurs fiziki morya. L.: Gidrometizdat, 1959. 477 p.
6. Doronin Yu.P. Fizika okeana. L.: Gidrometizdat, 1978. 296 p.
7. Man'kovskii V.I., Man'kovskaya E.V., Solov'ev M.V. Gidroopticheskie xarakteristiki Chernogo morya: Spravochnik. Sevastopol': EKOSI-Gidrofizika, 2009. 92 p.
8. Karabashev G.S. Optika okeana. V. 1. Fizicheskaya optika okeana / pod red. A.S. Monina. 1983. M.: Nauka, 1983. 371 p.
9. Man’Kovsky V.I. Yellow substance in the surface waters of the eastern part of the tropical Atlantic // Phys. Oceanograph. 2015. N 3. P. 50–57. DOI: 10.22449/1573-160X-2015-3-50-57.
10. Pope R.M., Fry E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements // Appl. Opt. 1997. V. 36, N 33. P. 8710–8723.
11. Man'kovskii V.I. Eksperimental'nye i teoreticheskie dannye o tochke peresecheniya indikatris rasseyaniya sveta morskoi vodoi // Fizika atmosf. i okeana. 1975. V. 11, N 12. P. 1284–1293.
12. Man'kovskii V.I. Spektral'naya izmenchivost' koeffitsienta asimmetrii indikatrisy rasseyanna sveta morskoi vodoi // Okeanologiya. 1984. V. 24, iss. 1. P. 63–69.
13. Маньковский В.И. Изменение коэффициента асимметрии индикатрисы рассеяния света природных вод, содержащих органические частицы / В.И. Маньковский // Изв. РАН. Физ. атмосф. и океана. 2016. Т. 52, № 3. С. 373. DOI: 10.7868/S0002351516030081.EDN WALSOJ.
14. Mankovsky V.I., Mankovskaya E.V. Relation of suspended organic particle size with water productivity // Proc. SPIE 11560, 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. 12 November. 2020. N 115603L. URL: https://doi.org/10.1117/12.2574977.
15. Man'kovskii V.I., Man'kovskaya E.V. Sposob otsenki pokazatelya vertikal'nogo oslableniya nisxodyashchei obluchennosti po pokazatelyu oslableniya sveta v vodax Chernogo morya // Fundamental'naya i prikladnaya gidrofizika. 2024. Iss. 17. P. 84–90. URL: https://doi.org/10.59887/2073-6673.2024.17(3)-7.
16. Korchemkina E.N., Mankovskaya E.V. Optical properties of the Black Sea waters near oceanographic platform during coccolithophore blooms in 2012 and 2017 // Fundamental Appl. Hydrophys. 2020. V 13, N 2. P. 25–34. DOI: 10.7868/S2073667320020033.