Vol. 38, issue 12, article # 10

Rozanov A. P., Gribanov K. G., Zаdvornykh I. V., Sukhikh G. A., Valdayskikh V. V., Zakharov V. I. Carbon dioxide flux balance in Sverdlovsk region and its transboundary transfer. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 1031–1037. DOI: 10.15372/AOO20251210 [in Russian].
Copy the reference to clipboard
Abstract:

The current global warming is caused by an increase in the concentration of greenhouse gases in the atmosphere. Therefore, the estimation of the potential of different ecosystems for the sequestration of atmospheric carbon dioxide on both regional and global scales is relevant. The balance of natural carbon dioxide fluxes throughout the Sverdlovsk region is considered. An integral assessment of the net CO2 absorbed from the atmosphere by regional ecosystems for the period 2020–2022 is made based on the original NorthFlux machine learning model, where spectral data from the MODIS satellite sensor, meteorological data from retrospective climate analysis, and satellite data on the classification of the underlying surface vegetation are used as input data. Data on anthropogenic CO2 emissions are taken from the inventory of greenhouse gas emissions in the Sverdlovsk Region. To assess the transboundary transfer of carbon dioxide, we used a balance equation for CO2 fluxes in the atmospheric column and data on the average annual rate of increase in the CO2 concentration in the region's atmosphere obtained from ground-based IR Fourier spectroscopy using the Bruker IFS 125M high-resolution spectrometer at the Kourovka Astronomical Observatory for the period 2012–2024. As a result, it was found that the sequestration of atmospheric CO2 by the ecosystems of the Sverdlovsk region ranges from 10.9 to 15.2%, and its transboundary transfer outside the region to neighboring regions ranges from 72.5 to 76.7% of the annual industrial CO2 emissions in the region.

Keywords:

CO2 fluxes in ecosystems, net ecosystem exchange, transboundary transfer, machine learning model, MODIS satellite sensor

Figures:
References:

1. Summary for Policymakers // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. P. 3–32. DOI: 10.1017/9781009157896.001.
2. Strategiya sotsial'no-ekonomicheskogo razvitiya RF s nizkim urovnem vybrosov parnikovyx gazov do 2050 goda // Utverzhdena rasporyazheniem Pravitel'stva Rossiiskoi Federatsii ot 29 october 2021 year, N 3052-р. URL: http://static.government.ru/media/files/ADKkCzp3fWO32 e2yA0BhtIpyzWfHaiUa.pdf.
3. Zamolodchikov D.G., Grabovskii V.I., Chestnyx O.V. Dinamika balansa ugleroda v lesax federal'nyx okrugov Rossiiskoi Federatsii // Voprosy lesnoi nauki. 2018. V. 1, N 1. P. 1–24. DOI: 10.31509/2658-607x-2018-1-1-1-24.
4. Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais P., Jackson R.B., Pacala S.W., McGuire A.D., Piao S., Rautiainen A., Sitch S., Hayes D. A large and persistent carbon sink in the world's forests // Science. 2011. V. 333. P. 988–993. DOI: 10.1126/science.1201609.
5. Romanovskaya A.A., Trunov A.A., Korotkov V.N., Karaban' R.T. Problema ucheta pogloshchayushchei sposobnosti lesov Rossii v Parizhskom soglashenii // Lesovedenie. 2018. N 5. P. 323–334. DOI: 10.1134/S0024114818050066.
6. Romanovskaya A., Korotkov V. Balance of Anthropogenic and Natural Greenhouse Gas Fluxes of All Inland Ecosystems of the Russian Federation and the Contribution of Sequestration in Forests // Forests. 2024. V. 15, N 4. P. 707. DOI: 10.3390/f15040707.
7. Nizkouglerodnoe budushchee dlya Sverdlovskoi oblasti: vozmozhnosti i perspektivy. Ekaterinburg: Ural'skii ekologicheskii soyuz, 2010. P. 47 p.
8. Kadastr vybrosov parnikovyx gazov Sverdlovskoi oblasti za 1990 year i period 2012–2017 years. Otchet o vypolnenii inventarizatsii ob"emov vybrosov i pogloshcheniya parnikovyx gazov na territorii Sverdlovskoi oblasti. Kemerovo: UGLEMETAN SERVIS, 2019. P. 399.
9. Ofitsial'nyi sait Pravitel'stva Sverdlovskoi oblasti. URL: https://midural.ru/100034/100083/ 100294/?ysclid=mdj8ws7cc478729924 (data obrashcheniya: 04.08.2025).
10. Ministerstvo inostrannyx del Rossiiskoi Federatsii, Informatsionnyi pasport Sverdlovskoi oblasti. URL: https://www.mid.ru/ru/foreign_policy/economic_diplomacy/vnesneekonomiceskie-svazi-sub-ektov-rossijskoj-federacii/1943329/ (data obrashcheniya: 04.08.2025).
11. Rozanov A.P. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM N 2023682424 North Flux. Data registratsii v Reestre programm dlya EVM 25 october 2023 year.
12. Rozanov A.P., Zadvornykh I.V., Gribanov K.G., Zakharov V.I. Otsenki stoka СО2 v lesnuyu ekosistemu po rezul'tatam nazemnogo giperspektral'nogo zondirovaniya atmosfery i neirosetevoi modeli // Optika atmosf. i okeana. 2023. V. 36, N 12. P. 991–997. DOI: 10.15372/AOO20231205; Rozanov A.P., Zadvornykh I.V., Gribanov K.G., Zakharov V.I. Estimates of carbon dioxide flux into the forest ecosystem based on results of ground-based hyperspectral sounding of the atmosphere and an artificial Neural Network Model // Atmos. Ocean. Opt. 2024. V. 37, N 2. P. 199–204.
13. Baldocchi D., Falge E., Gu L., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer C., Davis K., Evans R., Fuentes J., Goldstein A., Katul G., Law B., Lee X., Malhi Y., Meyers T., Munger W., Oechel W., Paw K.T., Pilegaard K., Schmid H., Valentini R., Verma S., Vesala T., Wilson K., Wofsy S. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities // Bul. Am. Meteorol. Soc. 2001. V. 82, N 11. P. 2415–2434. DOI: 10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2.
14. Pastorello G., Trotta C., Canfora E. et al. The FLUXNET 2015 dataset and the ONEFlux processing pipeline for eddy covariance data // Sci. Data. 2020. V. 7. P. 225. DOI: 10.1038/ s41597-020-0534-3.
15. Vermote E. MODIS/Terra Surface Reflectance Daily L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC. 2021. URL: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod09cmg-061. DOI: 10.5067/MODIS/MOD09CMG.061 (last access: 07.10.2023).
16. Friedl M., Sulla-Menashe D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. 2015. URL: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mcd12c1-006. DOI: 10.5067/MODIS/MCD12C1.006 (last access: 07.10.2023).
17. Loupian E., Burtsev M., Proshin A., Kashnitskii A., Balashov I., Bartalev S., Konstantinova A., Kobets D., Radchenko M., Tolpin V., Uvarov I. Usage experience and capabilities of the VEGA-Science System // Remote Sens. 2022. V. 14, N 1. P. 77. DOI: 10.3390/rs14010077.
18. Servis VEGA-Science. M., 2025. URL: http://sci-vega.ru/ (data obrashcheniya: 27.02.2025).
19. Kurbanov E.A., Vorob'yov O.N., Gubaev A.V., Lezhnin S.A., Polevshchikova Yu.A. Otsenka tochnosti i sopostavimosti tematicheskix kart lesnogo pokrova raznogo prostranstvennogo razresheniya na primere Srednego Povolzh'ya // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. V. 13, N 1. P. 36–48. DOI: 10.21046/2070-7401-2016-13-1-36-48.
20. Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J-N. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. DOI: 10.24381/cds.adbb2d47 (last access: 09.06.2025).
21. Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Krasnov O.A., Maksyutov Sh.Sh., Machida T., Panchenko M.V., Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Sasakawa M., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Issledovanie dinamiki kontsentratsii parnikovyx gazov na territorii Zapadnoi Sibiri // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 777–785. DOI: 10.15372/AOO20190910.
22. Zadvornykh I.V., Rozanov A.P., Gribanov K.G., Zakharov V.I., Valdaiskikh V.V. Otsenki potokov ugleroda v raione karbonovogo poligona v Kourovke po dannym nazemnogo i sputnikovogo zondirovaniya s ispol'zovaniem neirosetevoi modeli // Karbonovye poligony: monitoring, geoinformatsionnye sistemy, sekvestratsionnye tekhnologii / pod red. S.K. Guleva i A.V. Ol'cheva. M.: Nauchnyi mir, 2025. P. 98–120.