Imaging in the visible spectrum of processes in media transparent only to IR radiation requires the use of active converters of IR radiation into the visible spectrum. In this work, we simulate the transformation of IR radiation into the visible due to competition between transitions in manganese vapor active media. Our approach is based on the spatio-temporal kinetic model of the active medium. We evaluate the coefficient of the transformation for continuous and pulsed modes an input IR signal for a wide range of its power and various pulse repetition frequencies (from 2 to 20 kHz). We show the pulsed mode and pulse repetition frequency lower than the optimal one in terms of the amplified spontaneous emission power to be optimal for this transformation. The measurable transformation factor is higher than 10 for medium-size GDT. Results confirm than the bistatic scheme of a laser monitor on Mn vapor active media can be used to obtain a negative image of processes in a medium transparent for IR radiation, i.e., to make a pulsed narrowband converter of IR signals into visible ones.
competition between transitions, IR radiation, visible radiation, manganese vapor, active medium, brightness amplifier
1. Kanitz A., Kalus M.R., Gurevich E.L., Ostendorf A., Barcikowski S., Amans D. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles // Plasma Sources Sci. Technol. 2019. V. 28, N 10. P. 103001. DOI: 10.1088/1361-6595/ab3dbe.
2. Dittrich S., Barcikowski S., Gökce B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease // Opto-Electron. Adv. 2021. V. 4, N 1. P. 200072. DOI: 10.29026/oea.2021.200072.
3. Klyuchareva S.V., Ponomarev I.V., Pushkareva A.E. Numerical modeling and clinical evaluation of pulsed dye laser and copper vapor laser in skin vascular lesions treatment // J. Laser. Med. Sci. 2018. V. 10, N 1. P. 44–49. DOI: 10.15171/jlms.2019.07.
4. Opticheskie sistemy s usilitelyami yarkosti / pod red. G.G. Petrasha. M.: Nauka, 1991. 152 p.
5. Zemskov K.I., Isaev A.A., Kazaryan M.A., Petrash G.G. Lazernyi proekcionnyi mikroskop // Kvant. elektron. 1974. V. 14, N 1. P. 14–15.
6. Evtushenko G.S., Trigub M.V., Gubarev F.A., Evtushenko T.G., Torgaev S.N., Shiyanov D.V. Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting // Rev. Sci. Instrum. 2014. V. 85, N 3. P. 1–5. DOI: 10.1063/1.4869155.
7. Batenin V.M., Boichenko A.M., Buchanov V.V., Evtushenko G.S., Kazaryan M.A., Klimovskii I.I., Molodyh E.I. Lazery na samoogranichennyh perekhodah atomov metallov – 2 / pod red. V.M. Batenina. M.: Fizmatlit, 2009. 544 p.
8. Vuchkov N., Temelkov K. New High-Power Metal Halide Vapour Lasers: Gas-Discharge Plasma Physics and Lasers’ Applications. Adelaide: University of Adelaide, 2015. 194 p.
9. Little C.E. Metal Vapor Lasers: Physics, Engineering & Application. Chichester: John Willey&Sons. 1998. 646 p.
10. Isakov V.K., Potapov S.E. Issledovanie generacii aktivnyh sred na perekhodah atomov marganca // Kvant. elektron. 1983. V. 10, N 3. P. 588–597.
11. Kulagin A.E., Torgaev S.N., Evtushenko G.S. Kinetic modeling of amplifying characteristics of copper vapor active media for a wide range of input radiation power // Opt. Commun 2020. V. 460. 125136. DOI: 10.1016/j.optcom.2019.125136.
12. Derzhiev V.I., Zhidkov A.G., Yakovlenko S.I. Izluchenie ionov v neravnovesnoi plotnoi plazme. M.: Energoatomizdat, 1986. 160 p.
13. Martin G.A., Fuhr J.R., Wiese W.L. Atomic transition probabilities scandium through manganese // J. Phys. Chem. Ref. Data. 1988. V. 17, N 3. 505 p.
14. Corliss C.H., Bozman W.R. Experimental Transition probabilities for Spectral Lines of Seventy Elements. Washington: Government Printing Office, 1962. 562 p.
15. Blackwell-Whitehead R., Pavlenko Y.V., Nave G., Pickering J.C., Jones H.R.A., Lyubchik Y., Nilsson H. Infrared Mn I laboratory oscillator strengths for the study of late type stars and ultracool dwarfs // Aston. Astrophys. 2011. V. 525, N A44. DOI: 10.1051/0004-6361/201015006.
16. Głowacki P., Stefanska D., Ruczkowski J., Elantkowska M. Estimation of radiative parameters for atomic manganese from the point of view of possible clock transitions and laser cooling schemes // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 276, N 107898. DOI: 107898. 10.1016/j.jqsrt.2021.107898.
17. Kabakçi S., Özdemir L., Usta B.K. Electric dipole transitions for 3d64s–3d64p in Mn I // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 248–255. DOI: 10.1016/j.jqsrt.2015.06.014.
18. Trigub M.V., Gembukh P.I., Vasnev N.A., Shiyanov D.V. Lazernyi monitor dlya odnovremennoi vizualizacii v vidimom i blizhnem IK-diapazonah spektra // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 239–243. DOI: 10.15372/AOO20230310; Trigub M.V., Gembukh P.I., Vasnev N.A., Shiyanov D.V. Laser monitor for simultaneous imaging in the VIS and near-IR spectral regions // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 415–420.
19. Arlancev S.V., Borovich B.L., Buchanov V.V., Yurchenko N.I. Chislennoe modelirovanie, sravnenie s eksperimentami i potencial'nye vozmozhnosti lazerov na parah Mn s nakachkoi kilovol'tnym puchkom elektronov // Kvant. elektron. 1996. V. 23, N 11. P. 977–982. DOI: 10.1070/QE1996v026n11ABEH000848.
20. Singh D.K., Dikshit B., Vijayan R., Mukherjee J., Rawat V.S. Analysis of the discharge plasma impedance of copper vapor laser // Laser Phys. 2022. V. 32, N 055002. DOI: 10.1088/1555-6611/ac603b.
21. Kulagin A., Trigub M. Kinetics of the CuBr vapor active medium under non-typical excitation conditions // Appl. Phys. B. 2023. V. 129, N 67. DOI: 10.1007/s00340-023-08010-1.