Vol. 38, issue 12, article # 2

Rukosuev A. L., Bogachev V. A., Volkov M. V., Kudryashov A. V., Nikitin A. N., Sheldakova Yu. V., Starikov F. A. Compensation of dynamic fluctuations of laser radiation wavefront in a turbulent medium. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 976–982. DOI: 10.15372/AOO20251202 [in Russian].
Copy the reference to clipboard
Abstract:

This work is devoted to the development and experimental verification of effective methods for compensating for the dynamic atmospheric distortions of a laser beam propagating through a turbulent medium. The paper presents the results of a laboratory experiment on the correction of wavefront distortions of laser radiation propagating along a turbulent path in a pavilion. Turbulence was simulated using a fan heater supplying warm air perpendicular to the beam propagation. Distortion compensation was performed using an adaptive optics system, including a wavefront tilt corrector and a bimorph deformable mirror. The system efficiency was assessed by analyzing the far-field intensity distribution. It is shown that the generated turbulent distortions are spectrally similar to Kolmogorov turbulence with a bandwidth of about 30 Hz. It is found that for effective compensation of wavefront aberrations, the operating frequency of the adaptive optics system should be 20–30 times higher than the turbulence bandwidth. At a system operating frequency of 1 kHz, the beam divergence was reduced to 1.4 of the diffraction limit, and by increasing the frequency to 2 kHz, a beam stabilization accuracy of 5 mrad can be achieved using an FPGA. The results of this work can be used to design high-performance systems related to the propagation of laser radiation in a turbulent medium.

Keywords:

adaptive optics, adaptive optics system, field programmable gate array, atmospheric turbulence

Figures:
References:

1. Phipps C.R., Baker K.L., Libby S.B., Liedahl D.A., Olivier S.S., Pleasance Lyn D., Rubenchik A., Trebes J.E., George E.V., Marcovici B., Reilly J.P., Valley M.T. Removing orbital debris with lasers // Adv. Space Res. 2012. V. 49. P. 1283–1300. DOI: 10.1364/AO.54.001453.
2. Shen S., Jin X., Hao C. Cleaning space debris with a space-based laser system // Chin. J. Aeronaut. 2014. V. 27. P. 805–811. DOI: 10.1016/j.cja.2014.05.002.
3. Weyrauch T., Vorontsov M. Free-space laser communications with adaptive optics: Atmospheric compensation experiments // J. Opt. Commun. Rep. 2004. V. 1. P. 355–379. DOI: 10.1007/s10297-005-0033-5.
4. Huang Q., Liu D., Chen Y., Wang Y., Tan J., Chen W., Liu J., Zhu N. Secure free-space optical communication system based on data fragmentation multipath transmission technology // Opt. Express. 2018. V. 26. P. 13536–13542. DOI: 10.1364/OE.26.013536.
5. Wang R., Wang Y., Jin C., Yin X., Wang S., Yang C., Cao Z., Mu Q., Gao S., Xuan L. Demonstration of horizontal free-space laser communication with the effect of the bandwidth of adaptive optics system // Opt. Commun. 2018. V. 431. P. 167–173. DOI: 10.1016/j.optcom.2018.09.038.
6. Andrews L.C., Phillips R.L. Laser Beam Propagation Through Random Media. Bellingham, WA: SPIE Press, 2005. 820 p.
7. Liu D., Wang Z., Liu J., Tan J., Yu L., Mei H., Zhou Y., Zhu N. Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels // Opt. Eng. 2017. V. 56. P. 106111. DOI: 10.1117/1.OE.56.10.106111.
8. Li M., Cvijetic M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction // Appl. Opt. 2015. V. 54. P. 1453–1462. DOI: 10.1364/AO.54.001453.
9. Rui W., Yukun W., Chengbin J., Xianghui Y., Shaoxin W., Chengliang Y., Zhaoliang C., Quanquan M., Shijie G., Li X. Demonstration of horizontal free-space laser communication with the effect of the bandwidth of adaptive optics system // Opt. Commun. 2019. V. 431. P. 167–173. DOI: 10.1016/j.optcom.2018.09.038.
10. Rukosuev A.L., Nikitin A.N., Sheldakova Y.V., Kudryashov A.V., Belousov V.N., Bogachev V.A., Volkov M.V., Garanin S.G., Starikov F.A. Fast adaptive optical system for correcting the laser wavefront distorted by atmospheric turbulence // Quantum. Electron. 2020. V. 50. P. 707–709. DOI: 10.1070/QEL17382.
11. Rukosuev A., Nikitin A., Belousov V., Sheldakova J., Toporovsky V., Kudryashov A. Expansion of the laser beam wavefront in terms of Zernike polynomials in the problem of turbulence testing // Appl. Sci. 2021. V. 11, N 24. P. 12112. DOI: 10.3390/app112412112.
12. Kudryashov A., Rukosuev A., Nikitin A., Galaktionov I., Sheldakova J. Real-time 1.5 kHz adaptive optical system to correct for atmospheric turbulence // Opt. Express. 2020. V. 28. P. 37546–37552. DOI: 10.1364/ AOMS.2020.JW3G.5.
13. Rausch P., Verpoort S., Wittrock U. Unimorph deformable mirror for space telescopes: Design and manufacturing // Opt. Express. 2015. V. 23. P. 19469–19477. DOI: 10.1364/OE.23.019469.
14. Sinquin J.-C., Lurçon J.-M., Guillemard C. Deformable mirror technologies for astronomy at CILAS // Proc. SPIE. 2008. V. 7015. P. 70150O. DOI: 10.1117/12.787400.
15. Volkov M.V., Bogachev V.A., Starikov F.A., Shnyagin R.A. Chislennye issledovaniya dinamicheskoi adaptivnoi fazovoi korrektsii turbulentnykh iskajenii izlucheniya i otsenka ikh vremennykh kharakteristik s pomoshch'yu datchika Sheka–Gartmana // Optika atmosf. i okeana. 2021. V. 34, N 7. P. 547–554. DOI: 10.15372/AOO20210710; Volkov M.V., Bogachev V.A., Starikov F.A., Shnyagin R.A. Numerical study of dynamic adaptive phase correction of radiation turbulent distortions and estimation of their frequency bandwidth with a Shack–Hartmann wavefront sensor // Atmos. Ocean. Opt. 2022, V. 35, N 3. P. 250–257.
16. Anugu N., Lancelot J.P. Study of atmospheric turbulence with Shack–Hartmann wavefront sensor // J. Opt. 2013. V. 42. P. 128–140.
17. Platt B., Shack R. History and principles of Shack–Hartmann wavefront sensing // J. Refr. Surg. 2001. V. 17, N 5. S573-7.
18. Southwell W.H. Wave-front estimation from wave-front slope measurements // J. Opt. Soc. Am. 1980. V. 70. P. 998–1006.
19. Primot J. Theoretical description of Shack–Hartmann wave-front sensor // Opt. Commun. 2003. V. 222. P. 81–92.
20. Neal D.R., Copland J., Neal D.A. Shack–Hartmann wavefront sensor precision and accuracy // Proc. SPIE. 2002. V. 4779. DOI: 10.1117/12.450850.
21. GOST Р 8.745–2011/ISO/TR 14999-2:2005 – Gosudarstvennaya sistema obespecheniya edinstva izmerenii, optika i fotonika. Interferentsionnye izmereniya opticheskikh elementov i sistem. Part 2. Izmereniya i metodika otsenki rezul'tatov. M.: Standartinform, 2014. 53 p.
22. Brigham E.O. The Fast Fourier Transform and its Applications. N.J.: Prentice-Hall, 1988. 448 p.
23. Belousov V.N., Bogachev V.A., Volkov M.V., Garanin S.G., Kudryashov A.V., Nikitin A.N., Rukosuev A.L., Starikov F.A., Sheldakova Yu.V., Shnyagin R.A. Issledovaniya prostranstvenno-vremennykh kharakteristik iskajennogo turbulentnost'yu lazernogo izlucheniya pri ego dinamicheskoi fazovoi korrektsii v adaptivnoi opticheskoi sisteme // Kvant. elektron. 2021. V. 51, N 11. P. 992–999.
24. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
25. Hardi Dj.U. Aktivnaya optika: Novaya tekhnika upravleniya svetovym puchkom // TIIER. 1978. V. 66, N 6. P. 31–56.
26. Volkov M.V., Starikov F.A. Simulation of phase correction of sinusoidal distortions in the adaptive optical system with finite operation speed // Proc. SPIE. 2022. V. 12341. DOI: 10.1117/12.2644876.