The paper presents the results of lidar measurements of the vertical distribution of optical characteristics of dust aerosol from the Gobi Desert in the free troposphere of Vladivostok. The instrument used is an aerosol-Raman lidar with a cross-polarization channel, which provides vertical profiles of a set of (3β + 2α + δ). High values (δа = 0.13¸0.24), typical of submicron dust aerosol particles, are noted in the altitude range 3.00–4.25 km. This altitude range was also characterized by low values of the Ångström parameter (Å = 0.5) and high values of the single scattering albedo w = 0.98¸0.99. The values of complex refractive index (m == mr + imi) in the dust layer were characteristic of dust particles: mr = 1.48¸1.56, mi = 0.001. The effective radius (reff) varied within 0.2–0.4 mm with a maximum at an altitude of 3.8 km. The particle size distribution function in the dust layer had a well-defined bimodal structure with a slight excess of the coarse mode over the fine one. The modal radii of the fine and coarse fractions rf = 0.18 mm and rc = 0.8 mm, respectively.
dust aerosol, lidar sounding, depolarization ratio, long-range transport, optical and microphysical aerosol properties
1. Mona L., Liu Z., Müller D., Omar A., Papayannis A., Pappalardo G., Sugimoto N., Vaughan M. Lidar measurements for desert dust characterization: An overview // Adv. Meteorol. 2012. V. 2012, N 1. P. 1–36. DOI: 10.1155/2012/356265.
2. Bauer E., Ganopolski A. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles // Clim. Past. 2014. V. 10, N 4. P. 1333–1348. DOI: 10.5194/cp-10-1333-2014.
3. Zhang X.Y., Arimoto R., An Z.S. Dust emissions from Chinese Desert sources linked to variations in atmospheric circulation // J. Geophys. Res. 1997. V. 102, N D23. P. 28041–28047. DOI: 10.1029/97JD02300.
4. Uno I., Eguchi K., Yumimoto K., Takemura T., Shimizu A., Uematsu M., Liu Z., Wang Z., Hara Y., Sugimoto N. Asian dust transported one full circuit around the globe // Nat. Geosci. 2009. V. 2, N 8. P. 557–560. DOI: 10.1038/ngeo583.
5. Iwasaka Y., Shibata T., Nagatani T., Shi G.-Y., Kim Y.S., Matsuki A., Trochkine D., Zhang D., Yamada M., Nagatani M., Nakata H., Shen Z., Li G., Chen B., Kawahira K. Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles // J. Geophys. Res. 2003. V. 108, N D23. P. 2002JD003267. DOI: 10.1029/2002JD003267.
6. Chen S., Huang J., Li J., Jia R., Jiang N., Kang L., Ma X., Xie T. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011 // Sci. China Earth Sci. 2017. V. 60, N 7. P. 1338–1355. DOI: 10.1007/s11430-016-9051-0.
7. Bukin O.A., Pavlov A.N., Salyuk P.A., Kul'chin Yu.N., Shmirko K.A., Stolyarchuk S.Yu., Bubnovskii A.Yu. Osobennosti vysotnogo raspredeleniya aerozolya vo vremya prokhojdeniya pylevykh bur' nad zalivom Petra Velikogo v 2006 year i ikh vozdeistvie na fitoplanktonnye soobshchestva Yaponskogo morya // Optika atmosf. i okeana. 2007. V. 20, N 4. P. 341–348.
8. Sakerin S.M., Pavlov A.N., Bukin O.A., Kabanov D.M., Kornienko G.I., Pol’kin V.V., Stolyarchuk S.Yu., Turchinovich Yu.S., Shmirko K.A., Mayor A.Yu. Rezul'taty kompleksnogo aerozol'nogo eksperimenta v perekhodnoi zone «materik–okean» (Primor'e i Yaponskoe more). Part 1. Variatsii aerozol'noi opticheskoi tolshchi atmosfery i vertikal'nye profili // Optika atmosf. i okeana. 2010. V. 23, N 8. P. 691–699; Sakerin S.M., Pavlov A.N., Bukin O.A., Kabanov D.M., Kornienko G.I., Pol’kin V.V., Stolyarchuk S.Yu., Turchinovich Yu.S., Shmirko K.A., Mayor A.Yu. Results of an integrated aerosol experiment in the continent–ocean transition zone (Primorye and the Sea of Japan). Part 1: Variations of atmospheric aerosol optical depth and vertical profiles // Atmos. Ocean. Opt. 2011. V. 24, N 1. P. 64–73.
9. Bukin O.A., Shmirko K.A., Maior A.Yu., Pavlov A.N., Stolyarchuk S.Yu., Kornienko G.I., Erofeev D.V. Osobennosti raspredeleniya atmosfernogo aerozolya po razmeram v perekhodnoi zone materik-okean // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 2. P. 50–56.
10. Liu L., Guo J., Gong H., Li Z., Chen W., Wu R., Wang L., Xu H., Li J., Chen D., Zhai P. Contrasting influence of Gobi and Taklimakan Deserts on the dust aerosols in western north America // Geophys. Res. Lett. 2019. V. 46, N 15. P. 9064–9071. DOI: 10.1029/2019GL083508.
11. VanCuren R.A., Cahill T.A. Asian aerosols in North America: Frequency and concentration of fine dust // J. Geophys. Res. 2002. V. 107, N D24. DOI: 10.1029/2002JD002204.
12. Nousiainen T. Optical modeling of mineral dust particles: A review // J. Quant. Spectrosc. Radiative Transfer. 2009. V. 110, N 14–16. P. 1261–1279. DOI: 10.1016/j.jqsrt.2009.03.002.
13. Zhang Z., Engling G., Lin C.-Y., Chou C.C.-K., Lung S.-C.C., Chang S.-Y., Fan S., Chan C.-Y., Zhang Y.-H. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China // Atmos. Environ. 2010. V. 44, N 26. P. 3187–3195. DOI: 10.1016/j.atmosenv.2010.05.024.
14. Yu X., Cheng T., Chen J., Liu Y. A comparison of dust properties between China continent and Korea, Japan in East Asia // Atmos. Environ. 2006. V. 40, N 30. P. 5787–5797. DOI: 10.1016/j.atmosenv.2006.05.013.
15. Matsuki A., Iwasaka Y., Osada K., Matsunaga K., Kido M., Inomata Y., Trochkine D., Nishita C., Nezuka T., Sakai T., Zhang D., Kwon S.-A. Seasonal dependence of long-range transport and vertical distribution of free tropospheric aerosols over East Asia: On the basis of aircraft and lidar measurements and isentropic trajectory analysis // J. Geophys. Res. 2003. V. 108, N D23. P. 2002JD003266. DOI: 10.1029/2002JD003266.
16. Kim S., Yoon S.-C., Jefferson A., Ogren J.A., Dutton E.G., Won J.-G., Ghim Y.S., Lee B.-I., Han J.-S. Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001 // Atmos. Environ. 2005. V. 39, N 1. P. 39–50. DOI: 10.1016/j.atmosenv.2004.09.056.
17. Hayasaka T. Satake S., Shimizu A., Sugimoto N., Matsui I., Aoki K., Murajiet Y. Vertical distribution and optical properties of aerosols observed over Japan during the atmospheric brown Clouds-East Asia regional experiment 2005 // J. Geophys. Res. 2007. V. 112, N D22. P. 2006JD008086. DOI: 10.1029/2006JD008086.
18. Murayama T., Müller D., Wada K., Shimizu A., Sekiguchi M., Tsukamoto T. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003 // Geophys. Res. Lett. 2004. V. 31, N 23. P. 2004GL021105. DOI: 10.1029/2004GL021105.
19. Afonin S.V., Engel’ M.V., Mayor A.Yu., Pavlov A.N., Stolyarchuk S.Yu., Shmirko K.A., Bukin O.A. Rezul'taty kompleksnogo aerozol'nogo eksperimenta v perekhodnoi zone «materik–okean» (Primor'e i Yaponskoe more). Part 2. Analiz prostranstvennoi i vremennoi izmenchivosti kharakteristik aerozolya po sputnikovym dannym i lidarnym izmereniyam // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 811–819; Afonin S.V., Engel’ M.V., Mayor A.Yu., Pavlov A.N., Stolyarchuk S.Yu., Shmirko K.A., Bukin O.A. Results of an integrated aerosol experiment in the continent–ocean transition zone (Primorye and the Sea of Japan). Part 2. Analysis of spatiotemporal variations of aerosol characteristics according to satellite data and lidar measurements // Atmos. Ocean. Opt. 2011. V. 24, N 2. P. 198–206.
20. Shmirko K.A., Lisitsa V., Pavlov A., Stolyarchuk S. Variations of microphysical and optical characteristics of atmospheric aerosol in transition zone land-ocean based on data of lidar sensing // Proc. SPIE. 2018. V. 10833. DOI: 10.1117/12.2504436.
21. Veselovskii I., Whiteman D.N., Korenskiy M., Suvorina A., Pérez-Ramírez D. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction // Atmos. Meas. Tech. 2015. V. 8, N 10. P. 4111–4122. DOI: 10.5194/amt-8-4111-2015.
22. Veselovskii I., Dubovik O., Kolgotin A., Lapyonok T., Di Girolamo P., Summa D., Whiteman D.N., Mishchenko M., Tanré D. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements // J. Geophys. Res. 2010. V. 115, N D21. P. 2010JD014139. DOI: 10.1029/2010JD014139.
23. Ansmann A., Riebesell M., Wandinger U., Weitkamp C., Voss E., Lahmann W., Michaelis W. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio // Appl. Phys. B. 1992. V. 55, N 1. P. 18–28. DOI: 10.1007/BF00348608.
24. Burton S.P., Ferrare R.A., Hostetler C.A., Hair J.W., Rogers R.R., Obland M.D., Butler C.F., Cook A.L., Harper D.B., Froyd K.D. Aerosol classification of airborne high spectral resolution lidar measurements – methodology and examples // Atmos. Meas. Tech. 2012. V. 5. P. 73–98. DOI: 10.5194/amt-5-73-2012.
25. Freudenthaler V., Esselborn M., Wiegner M., Heese B., Tesche M., Ansmann A., Müller D., Althausen D., Wirth M., Fix A., Ehret G., Knippertz P., Toledano C., Gasteiger J., Garhammer M., Seefeldneret M. Depolarization ratio profiling at several wavelengths in pure Saharan dust during samum 2006 // Tellus B. 2009. V. 61, N 1. P. 165. DOI: 10.1111/j.1600-0889.2008.00396.
26. Zuev V.E., Zuev V.V. Distantsionnoe opticheskoe zondirovanie atmosfery. SPb.: Gidrometeoizdat, 1992. P. 232.
27. Müller D., Wandinger U., Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory // Appl. Opt. 1999. V. 38, N 12. P. 2346. DOI: 10.1364/AO.38.002346.
28. Veselovskii I., Kolgotin A., Griaznov V., Müller D., Wandinger U., Whiteman D.N. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding // Appl. Opt. 2002. V. 41, N 18. P. 3685. DOI: 10.1364/AO.41.003685.
29. Pérez-Ramírez D., Whiteman D.N., Veselovskii I., Kolgotin A., Korenskiy M., Alados-Arboledas L. Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization // Atmos. Meas. Tech. 2013. V. 6, N 11. P. 3039–3054. DOI: 10.5194/amt-6-3039-2013.
30. Mamouri R.E., Ansmann A. Potential of polarization/raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles // Atmos. Meas. Tech. 2017. V. 10, N 9. P. 3403–3427. DOI: 10.5194/amt-10-3403-2017.
31. Sakai T., Nagai T., Zaizen Y., Mano Y. Backscattering linear depolarization ratio measurements of mineral, sea salt, and ammonium sulfate particles simulated in a laboratory chamber // Appl. Opt. 2010. V. 49, N 23. P. 4441. DOI: 10.1364/AO.49.004441.
32. Bi J., Shi J., Xie Y., Liu Y., Takamura T., Khatri P. Dust aerosol characteristics and shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012 // J. Meteorol. Soc. Japan. 2014. V. 92A. P. 33–56. DOI: 10.2151/jmsj.2014-A03.
33. Zheng Y., Liu J., Wu R., Li Z., Wang B., Tamio T. Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in China // J. Geophys. Res. 2008. V. 113, N D16. P. 2007JD009384. DOI: 10.1029/2007JD009384.
34. Liu J., Zheng Y., Li Z., Flynn C., Welton E.J., Cribb M. Transport, vertical structure and radiative properties of dust events in Southeast China determined from ground and space sensors // Atmos. Environ. 2011. V. 45, N 35. P. 6469–6480. DOI: 10.1016/j.atmosenv.2011.04.031.
35. Sakai T., Shibata T., Iwasaka Y., Nagai T., Nakazato M., Matsumura T., Ichiki A., Kim Y.-S., Tamura K., Troshkin D., Hamdi S. Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan // Atmos. Environ. 2002. V. 36, N 35. P. 5479–5489. DOI: 10.1016/S1352-2310(02)00664-7.
36. Nee J.B., Chiang C., Hu H., Hu S., Yu J. Lidar Measurements of Asian dust storms and dust cloud interactions // J. Geophys. Res. 2007. V. 112, N D15. P. 2007JD008476. DOI: 10.1029/2007JD008476.