Том 33, номер 09, статья № 2

Синица Л. Н., Сердюков В. И., Луговской А. А. Спектр поглощения полосы (0120)–(0000) 13CH4 при низкой температуре. Идентификация спектра. // Оптика атмосферы и океана. 2020. Т. 33. № 09. С. 668–676. DOI: 10.15372/AOO20200902.
Скопировать ссылку в буфер обмена
Аннотация:

Спектры поглощения 13CH4 в диапазоне между 7400 и 7600 см-1 были зарегистрированы при четырех температурах от 208 до 305 К с помощью Фурье-спектрометра IFS 125M при спектральном разрешении 0,03 см-1. Использовалась однопроходная кювета длиной 220 см, что обеспечило пороговую чувствительность по поглощению порядка 10-6 см-1. Проведена идентификация линий полосы ν2 + 2ν3 молекулы 13CH4. Определены вращательные постоянные верхнего колебательного уровня и интегральная интенсивность полосы.

Ключевые слова:

CH4, спектр поглощения, низкотемпературная кювета, идентификация

Список литературы:

1. Goody R. Atmospheres of major planets // J. Atmos. Sci. 1969. V. 26. P. 997–1001.
2. Möller L., Sowers T., Bock M., Spahni R., Behrens M., Schmitt J., Miller H., Fischer H. Independent variations of CH4 emissions and isotopic composition over the past 160.000 years // Nat. Geosci. 2013. V. 6. P. 885(1–90).
3. Brown L.R., Sung K., Benner D.C., Malathy D.V., Boudon V., Gabard T., et al. Methane line parameters in the HITRAN 2012 database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
4. Dlugokencky E.J., Nisbet E.G., Fisher R.E., Lowry D. Global atmospheric methane: Budget, changes, and dangers // Philos. Trans. R. Soc. London. Ser. A. 2011. V. 369. P. 2058(1–72).
5. Monteil G., Houweling S., Dlugockenky E.J., Maenhout G., Vaughn B.H., White J.W.C., Rockmann T. Interpreting methane variations in the past two decades using measurements of CH4 mixing ratio and isotopic composition // Atmos. Chem. Phys. 2011. V. 11. P. 9141(1–53).
6. Champion J.-P., Hilico J.C., Wenger C., Brown L.R. Analysis of the ν2 ν4 dyad of 12CH4 and 13CH4 // J. Mol. Spectrosc. 1989. V. 133. P. 256.
7. Jouvard J., Lavorel B., Champion J.P., Brown L.R. Preliminary analysis of the pentad of 13CH4 from Raman and infrared spectra // J. Mol. Spectrosc. 1991. V. 150. P. 201.
8. Niederer H.M., Albert S., Bauerecker S., Boudon V., Champion J.P., Quack M. Global analysis of the infrared spectrum of 13CH4: Lines in the region 0 to 3200 cm-1 // Chimia. 2008. V. 62. P. 273.
9. Niederer H.M., Wang X.G., Carrington T., Albert S., Bauerecker S., Boudon V., Quack M. Analysis of the rovibrational spectrum of 13CH4 in the Octad range // J. Mol. Spectrosc. 2013. V. 291. P. 33–47.
10. Brown L.R., Nikitin A.V., Sung K., Rey M., Tashkun S.A., Tyuterev Vl.G., Crawford T.J., Smith M., Mantz A.W. Measurements and modelling of cold 13CH4 spectra in the 3750–4700 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 174. P. 88–100.
11. Kochanov V.P., Serdyukov V.I., Sinitsa L.N. Use of the F2–LiF colour-centre laser in intracavity laser spectroscopy // Opt. Acta. 1985. V. 32. P. 1273–1280.
12. Le Wang, Mondelain D., Kassi S., Campargue A. The absorption spectrum of methane at 80 and 294 K in the icosad (6717–7589 cm-1): Improved empirical line lists, isotopologue identification and temperature dependence // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 47–57.
13. Starikova E., Sung K., Nikitin A., Rey M., Mantz A., Smith M. The 13CH4 absorption spectrum at 80 K: Assignment and modeling of the lower part of the Tetradecad in the 4970–5470 cm-1 spectral range // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 206. P. 306.
14. Starikova E., Nikitin A.V., Rey M., Tashkun S.A., Mondelain D., Kassi S., Campargue A., Tyuterev Vl.G. Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2–3 band (5853–6201 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 170.
15. Campargue A., Lopez Segovia J., Béguier S., Kassi S., Mondelain D. The absorption spectrum of 13CH4 in the region of the 2–3 band at 1.66 mm: Empirical line lists and temperature dependence // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 152. P. 140.
16. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner. The HITRAN 2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3.
17. Happler M., Quack M. High-resolution Fourier transform infrared and cw-diode laser cavity ring-down spectroscopy of the n2 + 2n3 band of methane near 7510 cm-1 in slit jet expansions and at room temperature // J. Chem. Phys. 2002. V. 116. P. 6045–6055.
18. Rey M., Nikitin A., Campargue A., Kassi S., Mondelain D., Tyuterev Vl.G. Ab initio variational predictions for understanding highly congested spectra: Rovibrational assignment of 108 new methane sub-bands in the icosad range (6280–7800 cm-1) // Phys. Chem. Chem. Phys. 2016. V. 18. P. 176–189.
19. Campargue A., Béguier S., Zbiri Y., Mondelain D., Kassi S., Karlovets E.V., Nikitin A.V., Rey M., Starikova E.N., Tyuterev Vl.G. The 13CH4 absorption spectrum in the Icosad range (6600–7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence // J. Mol. Spectrosc. 2016. V. 326. P. 115.
20. Campargue A., Leshchishina O., Wang L., Mondelain D., Kassi S. The WKLMC empirical line lists (5852–7919 cm-1) for methane between 80 K and 296 K: “Final” lists for atmospheric and planetary applications // J. Mol. Spectrosc. 2013. V. 291. P. 16–22.
21. Ulenikov O.N., Bekhtereva E.S., Albert S., Bauerecker H.M., Niederer H.M., Quack M. Survey of the high resolution infrared spectrum of methane (12CH4 and 13CH4): Partial vibrational assignment extended towards 12.000 cm-1 // J. Chem. Phys. 2014. V. 141. P. 254302.
22. Rey M., Nikitin A., Campargue A., Kassi S., Mondelain D., Tyuterev Vl.G. Ab initio variational predictions for understanding highly congested spectra: Rovibrational assignment of 108 new methane sub-bands in the icosad range (6280–7800 cm-1) // Phys. Chem. Chem. Phys. 2016. V. 18. P. 176–189.
23. Rey M., Nikitin A., Bézard B., Rannou P., Coustenis A., Tyuterev Vl.G. New accurate theoretical line lists of 12CH4 and 13CH4 in the 0–13400 cm-1 range: Application to the modeling of methane absorption in Titan’s atmosphere // Icarus. 2018. V. 303. P. 114–130.
24. Rey M., Nikitin A.V., Tyuterev Vl.G. Predictions for methane spectra from potential energy and dipole moment surfaces: Isotopic shifts and comparative study of 12CH4 and 13CH4 // J. Mol. Spectrosc. 2013. V. 291. P. 85–97.
25. Сердюков В.И., Синица Л.Н., Луговской А.А., Емельянов Н.М. Низкотемпературная кювета для исследования спектров поглощения парниковых газов // Оптика атмосф. и океана. 2018. Т. 31, № 11. С. 930–936; Serdyukov V., Sinitsa L., Lugovskoi A., Emelyanov N. Low-temperature cell for studying absorption spectra of greenhouse gases // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 220–226.
26. Kruglova T.V., Shcherbakov A.P. Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines // Opt. Spectrosc. 2011. V. 111. P. 353–356.